A New Method of Artificial Intelligence Inspired by the Functioning of the Human Brain

Despite the immense progress in the field of AI in recent years, we are still very far from human intelligence. Indeed, if current AI techniques allow to train computer agents to perform certain tasks better than humans when they are trained specifically for them, the performance of these same agents is often very disappointing when they are put in conditions (even slightly) different from those experienced during training.

The human being is capable of adapting to new situations very effectively by using the skills he has acquired throughout his life. For example, a child who has learned to walk in a living room will quickly learn to walk in a garden as well. In such a context, learning to walk is associated with synaptic plasticity, which modifies the connections between neurons, while the rapid adaptation of walking skills learned in the living room to those needed to walk in the garden is associated with neuromodulation. Neuromodulation modifies the input-output properties of the neurons themselves via chemical neuromodulators.

Synaptic plasticity is the basis of all the latest advances in AI. However, no scientific work has so far proposed a way to introduce a neuromodulation mechanism into artificial neural networks. This result, described this week in the journal PLOS ONE, is the result of an extremely fruitful collaboration between neuroscientists and artificial intelligence researchers at the University of Liège developing intelligent algorithms: two PhD researchers, Nicolas Vecoven and Antoine Wehenkel, as well as two professors, Damien Ernst (specialist in artificial intelligence) and Guillaume Drion (neuroscientist).

These ULiège researchers have developed a completely original artificial neural network architecture, introducing an interaction between two sub-networks. The first one takes into account all the contextual information concerning the task to be solved and, on the basis of this information, neuromodule the second subnetwork in the manner of the brain's chemical neuromodulators. Thanks to neuromodulation, this second sub-network, which determines the actions to be performed by the intelligent agent, can therefore be adapted extremely quickly to the current task. This allows the agent to efficiently solve new tasks.

This innovative architecture has been successfully tested on classes of navigation problems for which adaptation is necessary. In particular, agents trained to move towards a target, while avoiding obstacles, were able to adapt to situations in which their movement was disrupted by extremely variable wind directions.

Prof. Damien Ernst: "The novelty of this research is that, for the first time, cognitive mechanisms identified in neuroscience are finding algorithmic applications in a multi-tasking context. This research opens perspectives in the exploitation in AI of neuromodulation, a key mechanism in the functioning of the human brain."

Nicolas Vecoven, Damien Ernst, Antoine Wehenkel, Guillaume Drion.
Introducing neuromodulation in deep neural networks to learn adaptive behaviours.
PLoS ONE 15(1), 2020. doi: 10.1371/journal.pone.0227922.

Most Popular Now

Almost All Leading AI Chatbots Show Sign…

Almost all leading large language models or "chatbots" show signs of mild cognitive impairment in tests widely used to spot early signs of dementia, finds a study in the Christmas...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

New Recommendations to Increase Transpar…

Patients will be better able to benefit from innovations in medical artificial intelligence (AI) if a new set of internationally-agreed recommendations are followed. A new set of recommendations published in The...

Digital Health Unveils Draft Programme f…

18 - 19 March 2025, Birmingham, UK. Digital Health has unveiled the draft programme for its Rewired 2025 event which will take place at the NEC in Birmingham in March next...

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...