3D Body Mapping could Identify, Treat Organs, Cells Damaged from Medical Conditions

Medical advancements can come at a physical cost. Often following diagnosis and treatment for cancer and other diseases, patients' organs and cells can remain healed but damaged from the medical condition. In fact, one of the fastest growing medical markets is healing and/or replacing organs and cells already treated, yet remain damaged by cancer, cardiovascular disease and other medical issues. The global tissue engineering market is expected to reach $11.5 billion by 2022. That market involves researchers and medical scientists working to repair tissues damaged by some of the world's most debilitating cancers and diseases.

One big challenge remains for the market - how to monitor and continuously test the performance of engineered tissues and cells to replace damaged ones. Purdue University researchers have come up with a 3D mapping technology to monitor and track the behavior of the engineered cells and tissues and improve the success rate for patients who have already faced a debilitating disease. The technology is published in the June 19 edition of ACS Nano.

"My hope is to help millions of people in need," said Chi Hwan Lee, an assistant professor of biomedical engineering and mechanical engineering in Purdue's College of Engineering, who leads the research team. "Tissue engineering already provides new hope for hard-to-treat disorders, and our technology brings even more possibilities."

The Purdue team created a tissue scaffold with sensor arrays in a stackable design that can monitor electrophysiological activities of cells and tissues. The technology uses the information to produce 3D maps to track activity.

"This device offers an expanded set of potential options to monitor cell and tissue function after surgical transplants in diseased or damaged bodies," Lee said. "Our technology offers diverse options for sensing and works in moist internal body environments that are typically unfavorable for electronic instruments."

Lee said the Purdue device is an ultra-buoyant scaffold that allows the entire structure to remain afloat on the cell culture medium, providing complete isolation of the entire electronic instrument from the wet conditions inside the body.

Lee and his team have been working with Sherry Harbin, a professor in Purdue's Weldon School of Biomedical Engineering, to test the device in stem cell therapies with potential applications in the regenerative treatment of diseases.

Their works align with Purdue's Giant Leaps celebration, celebrating the global advancements in health as part of Purdue's 150th anniversary. Health, including disease monitoring and treatment, is one of the four themes of the yearlong celebration's Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

Lee and the other researchers worked with the Purdue Research Foundation Office of Technology Commercializationto patent the new device.

Hyungjun Kim, Min Ku Kim, Hanmin Jang, Bongjoong Kim, Dong Rip Kim, and Chi Hwan Lee.
Sensor-Instrumented Scaffold Integrated with Microporous Spongelike Ultrabuoy for Long-Term 3D Mapping of Cellular Behaviors and Functions.
ACS Nano. doi: 10.1021/acsnano.9b02291.

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...