3D Body Mapping could Identify, Treat Organs, Cells Damaged from Medical Conditions

Medical advancements can come at a physical cost. Often following diagnosis and treatment for cancer and other diseases, patients' organs and cells can remain healed but damaged from the medical condition. In fact, one of the fastest growing medical markets is healing and/or replacing organs and cells already treated, yet remain damaged by cancer, cardiovascular disease and other medical issues. The global tissue engineering market is expected to reach $11.5 billion by 2022. That market involves researchers and medical scientists working to repair tissues damaged by some of the world's most debilitating cancers and diseases.

One big challenge remains for the market - how to monitor and continuously test the performance of engineered tissues and cells to replace damaged ones. Purdue University researchers have come up with a 3D mapping technology to monitor and track the behavior of the engineered cells and tissues and improve the success rate for patients who have already faced a debilitating disease. The technology is published in the June 19 edition of ACS Nano.

"My hope is to help millions of people in need," said Chi Hwan Lee, an assistant professor of biomedical engineering and mechanical engineering in Purdue's College of Engineering, who leads the research team. "Tissue engineering already provides new hope for hard-to-treat disorders, and our technology brings even more possibilities."

The Purdue team created a tissue scaffold with sensor arrays in a stackable design that can monitor electrophysiological activities of cells and tissues. The technology uses the information to produce 3D maps to track activity.

"This device offers an expanded set of potential options to monitor cell and tissue function after surgical transplants in diseased or damaged bodies," Lee said. "Our technology offers diverse options for sensing and works in moist internal body environments that are typically unfavorable for electronic instruments."

Lee said the Purdue device is an ultra-buoyant scaffold that allows the entire structure to remain afloat on the cell culture medium, providing complete isolation of the entire electronic instrument from the wet conditions inside the body.

Lee and his team have been working with Sherry Harbin, a professor in Purdue's Weldon School of Biomedical Engineering, to test the device in stem cell therapies with potential applications in the regenerative treatment of diseases.

Their works align with Purdue's Giant Leaps celebration, celebrating the global advancements in health as part of Purdue's 150th anniversary. Health, including disease monitoring and treatment, is one of the four themes of the yearlong celebration's Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

Lee and the other researchers worked with the Purdue Research Foundation Office of Technology Commercializationto patent the new device.

Hyungjun Kim, Min Ku Kim, Hanmin Jang, Bongjoong Kim, Dong Rip Kim, and Chi Hwan Lee.
Sensor-Instrumented Scaffold Integrated with Microporous Spongelike Ultrabuoy for Long-Term 3D Mapping of Cellular Behaviors and Functions.
ACS Nano. doi: 10.1021/acsnano.9b02291.

Most Popular Now

Study Finds AI Accurately Detects Fractu…

Emergency room and urgent care clinics are typically busy and patients often have to wait many hours before they can be seen, evaluated and receive treatment. Waiting for x-rays to...

Oracle Buys Cerner

Oracle Corporation (NYSE: ORCL) and Cerner Corporation jointly announced an agreement for Oracle to acquire Cerner through an all-cash tender offer for $95.00 per share, or approximately $28.3 billion in...

Philips and IJsselland Hospital Sign Lon…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it has signed a 12-year strategic partnership with IJsselland Hospital (Capelle aan den Ijssel, The Netherlands)...

Start of the European FAST III Study: An…

The first patients were recently enrolled in the FAST III trial at the Erasmus University Medical Center in Rotterdam, The Netherlands. This officially marked the beginning of a multicenter, randomized-controlled...

Computer Programs and Mobile Apps may He…

The COVID-19 pandemic has had a major impact on mental health across the globe. Depression is predicted to be the leading cause of lost life years due to illness by...

AI Points the Way to Better Doctor-Patie…

A computer analysis of hundreds of thousands of secure email messages between doctors and patients found that most doctors use language that is too complex for their patients to understand...

Could EKGs Help Doctors use AI to Detect…

Pulmonary embolisms are dangerous, lung-clogging blot clots. In a pilot study, scientists at the Icahn School of Medicine at Mount Sinai showed for the first time that artificial intelligence (AI)...

Mayo Clinic Researchers Use AI, Biomarke…

Treatment options for rheumatoid arthritis have often relied on trial and error. Now Mayo Clinic researchers are exploring the use of artificial intelligence (AI) and pharmacogenomics to predict how patients...

Open Call DIGITAL-2021-DEPLOY-01-TWINS-H…

The development of digital twins in healthcare (DTH) has progressed substantially, profiting from advances in science and technology. In order to exploit their benefits in view of better prevention approaches...

Computer Model of Blood Enzyme

Membrane-associated proteins play a vital role in a variety of cellular processes, yet little is known about the membrane-association mechanism. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is one such protein with an...

4.5 Million Euros in EU Funding for Saar…

This year, three computer scientists from Saarbrücken were awarded an "ERC Starting Grant" by the European Research Council. This award, endowed with 1.5 million euros each, is among the most...

Mjog by Livi Launches Remote Monitoring …

Mjog by Livi has launched a remote monitoring tool that will help GPs support and monitor people with depression through messages sent to their smartphones. The latest data from the Office...