IBM Helps Italian Orthopedic Institute Perform Deep Analytics to Treat Rare Skeletal Diseases

IBMIBM (NYSE: IBM)announced that its Research scientists are working with the Rizzoli Orthopedic Institute, in Bologna, Italy, to use information technology to better address treatment and research for rare genetic skeletal diseases.

Scientists from the two organizations are collaborating on a system called BioMIMS - short for BioMedical Imaging Management Solution - which integrates different types of medical data such as images, phenotype data, and genomic data. The system will enable advanced analytics on family trees that are dynamically created by the system to correlate between patients who show similar signs of the disease.

As scientists gain insight into genetic diseases at the molecular level, the critical role played by family history is becoming more apparent at all levels of treatment. However, until now, there has been no complete system for easily collecting, classifying and analyzing family histories for patients suffering from hereditary skeletal diseases like single and multiple exostoses. Unfortunately, most of this information traditionally sits in different hospitals and databases, and in different formats.

The new technology being developed by IBM and the Rizzoli Institute, will enable doctors to call upon all information related to a hereditary disease - including genetic information, observations studied, and imaging data from the perspective of the treatment history for any family members - so diagnosis and treatment becomes faster, less expensive, and more personalized. The project is scheduled to be completed in mid to late 2010.

The system will also build family history records, collect and classify, allowing research into advanced pedigree analytics. Because the disease is hereditary, it's critical to have access to data for all patients that are connected to the same pedigree. For example, when a child is being diagnosed, it's vital for physicians to see observations and clinical/genomic information from the parents, aunts, uncles, and other close relatives. The new system, from IBM Research - Haifa, will take the pedigrees and automatically assign them to groups based on common characteristics. These groupings have the potential to help doctors identify new research directions to better understand the correlation between genotype and the observable characteristics (phenotype) of the disease.

"BioMIMS will provide us with access to an invaluable collection of information so we can compare data to the records obtained from other patients and family members," noted Luca Sangiorgi, Manager of Medical Genetics at Rizzoli. "This holds the promise of significantly deepening our clinical knowledge about rare skeletal diseases, helping us diagnose and treat individual patients more accurately. Bridging the two worlds of information technology and healthcare will help lead the way towards new answers and new cures."

"This project demonstrates how new information technology solutions are allowing medical personal to make more accurate diagnoses and select treatment programs that have a much higher potential for success," noted Boaz Carmeli, manager of IT for healthcare and Life Science group at IBM Research Haifa. "Integrating information from various sources, and realizing the vision of interoperability and cooperation between healthcare organizations, is a surefire key to smarter healthcare solutions and better insight into the treatment of diseases."

The Rizzoli Orthopedic Institute is the second largest institute in the world for the study of rare skeletal diseases. Established in 1896 as a specialized hospital for orthopedics and traumatology, it evolved into a musculoskeletal center that distinguishes itself through pioneering clinical and research advancements. Physicians at the Institute see about 150,000 patients and perform about 18,000 surgeries annually.

IBM's track record of improving healthcare through scientific achievements and collaboration with healthcare companies dates back to the 1950s. In the last decade, IBM has developed a national digital mammography archive with the University of Pennsylvania; developed a clinical trial participant system with the Mayo Clinic; collaborated with Scripps to understand how influenza viruses mutate and proactively develop treatments; collaborated with European universities to develop better methods to decide on antiretroviral therapies for HIV; launched the World Community Grid, which has done projects on cancer, aids, dengue fever; and much more.

For more about the Rizzoli Orthopedic Institute, see www.ior.it.

For more information about IBM, visit www.ibm.com/research.

Related news articles:

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...