IBM Helps Italian Orthopedic Institute Perform Deep Analytics to Treat Rare Skeletal Diseases

IBMIBM (NYSE: IBM)announced that its Research scientists are working with the Rizzoli Orthopedic Institute, in Bologna, Italy, to use information technology to better address treatment and research for rare genetic skeletal diseases.

Scientists from the two organizations are collaborating on a system called BioMIMS - short for BioMedical Imaging Management Solution - which integrates different types of medical data such as images, phenotype data, and genomic data. The system will enable advanced analytics on family trees that are dynamically created by the system to correlate between patients who show similar signs of the disease.

As scientists gain insight into genetic diseases at the molecular level, the critical role played by family history is becoming more apparent at all levels of treatment. However, until now, there has been no complete system for easily collecting, classifying and analyzing family histories for patients suffering from hereditary skeletal diseases like single and multiple exostoses. Unfortunately, most of this information traditionally sits in different hospitals and databases, and in different formats.

The new technology being developed by IBM and the Rizzoli Institute, will enable doctors to call upon all information related to a hereditary disease - including genetic information, observations studied, and imaging data from the perspective of the treatment history for any family members - so diagnosis and treatment becomes faster, less expensive, and more personalized. The project is scheduled to be completed in mid to late 2010.

The system will also build family history records, collect and classify, allowing research into advanced pedigree analytics. Because the disease is hereditary, it's critical to have access to data for all patients that are connected to the same pedigree. For example, when a child is being diagnosed, it's vital for physicians to see observations and clinical/genomic information from the parents, aunts, uncles, and other close relatives. The new system, from IBM Research - Haifa, will take the pedigrees and automatically assign them to groups based on common characteristics. These groupings have the potential to help doctors identify new research directions to better understand the correlation between genotype and the observable characteristics (phenotype) of the disease.

"BioMIMS will provide us with access to an invaluable collection of information so we can compare data to the records obtained from other patients and family members," noted Luca Sangiorgi, Manager of Medical Genetics at Rizzoli. "This holds the promise of significantly deepening our clinical knowledge about rare skeletal diseases, helping us diagnose and treat individual patients more accurately. Bridging the two worlds of information technology and healthcare will help lead the way towards new answers and new cures."

"This project demonstrates how new information technology solutions are allowing medical personal to make more accurate diagnoses and select treatment programs that have a much higher potential for success," noted Boaz Carmeli, manager of IT for healthcare and Life Science group at IBM Research Haifa. "Integrating information from various sources, and realizing the vision of interoperability and cooperation between healthcare organizations, is a surefire key to smarter healthcare solutions and better insight into the treatment of diseases."

The Rizzoli Orthopedic Institute is the second largest institute in the world for the study of rare skeletal diseases. Established in 1896 as a specialized hospital for orthopedics and traumatology, it evolved into a musculoskeletal center that distinguishes itself through pioneering clinical and research advancements. Physicians at the Institute see about 150,000 patients and perform about 18,000 surgeries annually.

IBM's track record of improving healthcare through scientific achievements and collaboration with healthcare companies dates back to the 1950s. In the last decade, IBM has developed a national digital mammography archive with the University of Pennsylvania; developed a clinical trial participant system with the Mayo Clinic; collaborated with Scripps to understand how influenza viruses mutate and proactively develop treatments; collaborated with European universities to develop better methods to decide on antiretroviral therapies for HIV; launched the World Community Grid, which has done projects on cancer, aids, dengue fever; and much more.

For more about the Rizzoli Orthopedic Institute, see www.ior.it.

For more information about IBM, visit www.ibm.com/research.

Related news articles:

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...