Smartphones and Wearable Devices could Revolutionise Medical Care for People with Brain Disorders

RADAR-CNS (Remote assessment of disease and relapse - Central Nervous System), a major new research programme supported by the Innovative Medicines Initiative (IMI) started in April 2016 and will develop new ways of monitoring major depressive disorder, epilepsy, and multiple sclerosis using wearable devices and smartphone technology.

This programme aims to improve patients' quality of life, and potentially to change how these and other chronic disorders are treated.

Continuous remote assessment using smartphones and wearable devices provides a complete picture of a patient’s condition at a level of detail which was previously unachievable. Moreover, it could potentially allow treatment to begin before a patient’s health deteriorates, preventing the patient relapsing or becoming more ill before they seek treatment.

RADAR-CNS is jointly led by King's College London and Janssen Pharmaceutica NV, funded by the Innovative Medicines Initiative (a Public Private Partnership established between the European Federation of Pharmaceutical Industries and Associations (EFPIA) and the European Union) and includes 24 organisations from across Europe and the US. The programme brings together experts from diverse fields including clinical research, engineering, computer science, information technology, data analytics and health services.

Epilepsy, depression, and multiple sclerosis are distinct disorders, with different causes and symptoms, all of which can be severely detrimental to patients' quality of life and life expectancy. For all three disorders, patients often experience periods where their symptoms are manageable, followed by periods of deterioration and acute illness (relapse). Patient surveys have repeatedly highlighted the need to predict when relapses will happen and to improve the treatments which are available to stop them from occurring.

According to co-lead of the RADAR-CNS programme Professor Matthew Hotopf, Director of the NIHR Maudsley Biomedical Research Centre in London, UK, "In recent years, the quality and quantity of data that we can collect using wearable devices and smartphones has exploded. It may be that this sort of data can improve clinical care simply by providing more accurate information. Better still, it may be possible to spot when a patient is getting into trouble before their clinic visit."

"For example, in depression, someone's behaviour may change even before they have noticed they are struggling - their sleep may get worse, or they may stop doing so much in the weeks leading up to a relapse. RADAR-CNS will exploit the huge potential of wearable technologies to improve the lives of the millions of people worldwide with chronic illnesses like epilepsy, depression and multiple sclerosis."

Patients will be involved in RADAR-CNS from the start, helping to identify the most important symptoms to target. They will also advise researchers on how best to implement remote measurement technologies in a way that is acceptable and engaging to patients, including accounting for privacy and security.

Wherever possible, RADAR-CNS will use inexpensive and widely available technology, so that the end results can be made available to as many patients as possible. The research will also be developed in a way that allows the results to be transferred to other diseases, potentially allowing the benefits of remote measurement technologies to become pervasive in medicine, and transforming the way we think about prevention and cure.

According to co-lead of the RADAR-CNS programme Vaibhav Narayan, PhD, Head of Integrated Solutions and Informatics, Neuroscience, Janssen Research & Development, LLC, an affiliate of Janssen Pharmaceutica, "Our goal is to improve clinical care and outcomes by using data generated by patients as they go about their daily lives to predict and pre-empt relapses and improve their quality of life. Such 'predictive medicine' solutions will be backed by scientific evidence and will meet regulatory standards. At the same time, the privacy and security of patients and their care-givers will be fully protected."

The RADAR-CNS programme is a consortium of 24 organisations from across Europe and the US:

1. King's College London, United Kingdom
2. Provincia Lombardo-Veneta - Ordine Ospedaliero di San Giovanni di Dio - Fatebenefratelli, Italy
3. Lygature, Netherlands
3a. The Hyve, Netherlands
4. Università Vita-Salute San Raffaele, Italy
4a. San Raffaele Hospital/Ospedale San Raffaele, Italy
5. Fundacio Hospital Universitari Vall d'Hebron - Institut de Recerca, Spain
6. University of Nottingham, United Kingdom
7. Centro de Investigacion Biomedica en Red, Spain
7a. Fundació Sant Joan de Deu, Spain
8. Software AG , Germany
9. Region Hovedstaden, Denmark
10. Stichting VU-VUMC , Netherlands
11. Universitaetsklinikum Freiburg, Germany
12. Stichting imec Nederland, Netherlands
13. Katholieke Universiteit Leuven, Belgium
14. Northwestern University, United States
15. Universität Passau, Germany
16. Università degli Studi di Bergamo, Italy
17. Charité, Germany
18. Intel Corporation (UK) Ltd, United Kingdom
19. GABO:mi Gesellschaft für Ablauforganisation :milliarium mbH & Co. KG
20. Janssen Pharmaceutica NV, Belgium
21. Biogen Idec Limited, United Kingdom
22. H. Lundbeck A/S, Denmark
23. UCB Biopharma SPRL, Belgium
24. MSD IT Global Innovation Center s.r.o., Czech Republic

RADAR-CNS runs from April 1st, 2016 until March 31st, 2021, and is jointly led by King’s College London (KCL) and Janssen Pharmaceutica NV (JPNV).

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...