Smartphones and Wearable Devices could Revolutionise Medical Care for People with Brain Disorders

RADAR-CNS (Remote assessment of disease and relapse - Central Nervous System), a major new research programme supported by the Innovative Medicines Initiative (IMI) started in April 2016 and will develop new ways of monitoring major depressive disorder, epilepsy, and multiple sclerosis using wearable devices and smartphone technology.

This programme aims to improve patients' quality of life, and potentially to change how these and other chronic disorders are treated.

Continuous remote assessment using smartphones and wearable devices provides a complete picture of a patient’s condition at a level of detail which was previously unachievable. Moreover, it could potentially allow treatment to begin before a patient’s health deteriorates, preventing the patient relapsing or becoming more ill before they seek treatment.

RADAR-CNS is jointly led by King's College London and Janssen Pharmaceutica NV, funded by the Innovative Medicines Initiative (a Public Private Partnership established between the European Federation of Pharmaceutical Industries and Associations (EFPIA) and the European Union) and includes 24 organisations from across Europe and the US. The programme brings together experts from diverse fields including clinical research, engineering, computer science, information technology, data analytics and health services.

Epilepsy, depression, and multiple sclerosis are distinct disorders, with different causes and symptoms, all of which can be severely detrimental to patients' quality of life and life expectancy. For all three disorders, patients often experience periods where their symptoms are manageable, followed by periods of deterioration and acute illness (relapse). Patient surveys have repeatedly highlighted the need to predict when relapses will happen and to improve the treatments which are available to stop them from occurring.

According to co-lead of the RADAR-CNS programme Professor Matthew Hotopf, Director of the NIHR Maudsley Biomedical Research Centre in London, UK, "In recent years, the quality and quantity of data that we can collect using wearable devices and smartphones has exploded. It may be that this sort of data can improve clinical care simply by providing more accurate information. Better still, it may be possible to spot when a patient is getting into trouble before their clinic visit."

"For example, in depression, someone's behaviour may change even before they have noticed they are struggling - their sleep may get worse, or they may stop doing so much in the weeks leading up to a relapse. RADAR-CNS will exploit the huge potential of wearable technologies to improve the lives of the millions of people worldwide with chronic illnesses like epilepsy, depression and multiple sclerosis."

Patients will be involved in RADAR-CNS from the start, helping to identify the most important symptoms to target. They will also advise researchers on how best to implement remote measurement technologies in a way that is acceptable and engaging to patients, including accounting for privacy and security.

Wherever possible, RADAR-CNS will use inexpensive and widely available technology, so that the end results can be made available to as many patients as possible. The research will also be developed in a way that allows the results to be transferred to other diseases, potentially allowing the benefits of remote measurement technologies to become pervasive in medicine, and transforming the way we think about prevention and cure.

According to co-lead of the RADAR-CNS programme Vaibhav Narayan, PhD, Head of Integrated Solutions and Informatics, Neuroscience, Janssen Research & Development, LLC, an affiliate of Janssen Pharmaceutica, "Our goal is to improve clinical care and outcomes by using data generated by patients as they go about their daily lives to predict and pre-empt relapses and improve their quality of life. Such 'predictive medicine' solutions will be backed by scientific evidence and will meet regulatory standards. At the same time, the privacy and security of patients and their care-givers will be fully protected."

The RADAR-CNS programme is a consortium of 24 organisations from across Europe and the US:

1. King's College London, United Kingdom
2. Provincia Lombardo-Veneta - Ordine Ospedaliero di San Giovanni di Dio - Fatebenefratelli, Italy
3. Lygature, Netherlands
3a. The Hyve, Netherlands
4. Università Vita-Salute San Raffaele, Italy
4a. San Raffaele Hospital/Ospedale San Raffaele, Italy
5. Fundacio Hospital Universitari Vall d'Hebron - Institut de Recerca, Spain
6. University of Nottingham, United Kingdom
7. Centro de Investigacion Biomedica en Red, Spain
7a. Fundació Sant Joan de Deu, Spain
8. Software AG , Germany
9. Region Hovedstaden, Denmark
10. Stichting VU-VUMC , Netherlands
11. Universitaetsklinikum Freiburg, Germany
12. Stichting imec Nederland, Netherlands
13. Katholieke Universiteit Leuven, Belgium
14. Northwestern University, United States
15. Universität Passau, Germany
16. Università degli Studi di Bergamo, Italy
17. Charité, Germany
18. Intel Corporation (UK) Ltd, United Kingdom
19. GABO:mi Gesellschaft für Ablauforganisation :milliarium mbH & Co. KG
20. Janssen Pharmaceutica NV, Belgium
21. Biogen Idec Limited, United Kingdom
22. H. Lundbeck A/S, Denmark
23. UCB Biopharma SPRL, Belgium
24. MSD IT Global Innovation Center s.r.o., Czech Republic

RADAR-CNS runs from April 1st, 2016 until March 31st, 2021, and is jointly led by King’s College London (KCL) and Janssen Pharmaceutica NV (JPNV).

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...