New Photonics Technique to Eliminate Unnecessary Thyroid Cancer Surgery

A team of experts from around Europe has come together to develop a portable device with a hand-held probe that will dramatically reduce invasive diagnostic and therapeutic procedures in the treatment of thyroid nodules, saving approximately €450 million Euros every year.

The Photonics PPP and EU-funded Laser and Ultrasound Co-Analyzer for Thyroid Nodules, or LUCA, is a state-of-the-art device built to make thyroid nodule diagnosis more accurate and more objective.

With as much as 30 percent of adults in Europe, or 128.9 million people having to deal with a thyroid nodule at some point in their lives, accurate diagnosis has never been so important.

Each year in Europe alone, around 800,000 cases of detected thyroid nodules will be non-diagnostic, or indeterminate. Of all these cases, 150,000, or nearly 19%, will end up being benign and could have avoided surgery altogether.

At €3000 per operation, excluding additional medical costs, 150,000 unnecessary surgeries could mean saving over €450 million annually. “This money is wasted. We cannot, however, put a price on the wellbeing of a patient who does not have to undergo unnecessary surgery”, said ICREA Professor at ICFO- The Institute of Photonic Sciences, and the scientific coordinator of LUCA, Turgut Durduran.

According to Dr. Mireia Mora from the August Pi i Sunyer Biomedical Research Institute (IDIBAPS) in Barcelona, "Current technology does not allow us to know whether a nodule is malignant or benign, before surgery takes place. We cannot take the risk of a misdiagnosis, so we operate.

"LUCA will eliminate a lot of this guesswork. It will provide objective information so that we can see if a nodule is malignant or benign.

"Small in size, similar to a fizzy drink bottle, the LUCA probe is placed on the neck of the patient, sending light and ultrasound of different wavelengths and frequencies into the skin. “Ultrasound sees the structure and light sees the physiology, meaning we can see in much more detail than ever before," Dr Mora said.

According to, Professor Durduran, "The LUCA platform combines ultrasound and near-infrared diffuse optical technologies in a single device and a probe. By combining information about tissue hemodynamics, chemical constitution as well as anatomy, the technique used by this device will overcome the shortcomings of present techniques while screening for malignant thyroid nodules."

Women tend to be more affected by this condition. Out of 30% of Europeans who have thyroid nodules, women are three times more likely to develop nodules than men. However, of those diagnosed with a malignant nodule, the ratio then drops to 2:1, men to women, respectively, albeit the fact that thyroid cancer is still more prevalent in women than in men.

The implications of the LUCA device are extremely promising since it will not only signify a change in thyroid cancer screening techniques, but it may also have a potential use in the diagnosis of other cancers, such as the breast or any part of the body that is accessible.

About LUCA
The LUCA project started on February 1st, 2016 and, over a 4-year period, will involve renowned organisations and industry partners from all over Europe: ICFO - The Institute for Photonic Sciences, ES (Scientific Coordinator); Politecnico di Milano, IT; Consorci Institut d'Investigacions Biomediques August PI I Sunyer, ES; Hemophotonics SL, ES; Vermon SA, FR; ECM - Echo Control Medical, FR; University of Birmingham, UK; European Institute for Biomedical Imaging Research, AT.

The LUCA project receives funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 688303 and is an initiative of the Photonics Public Private Partnership.

www.photonics21.org

About Photonics21
Photonics21 is the European Technology Platform (ETP) for photonics - a technology encompassing all of the products and processes around the emission, manipulation and detection of light. It is integral to a wide range of industries that include the medical, healthcare, transport, manufacturing, and telecommunications sectors. In December 2005 "Photonics21" was set up to bring the community of photonics professionals and industries together.

In September 2009, the European Commission defined photonics as one of five European Key Enabling Technologies (KET's) and shortly after the European Research & Innovation Program "Horizon 2020" invited Photonics21 to become a "Public Private Partnership" (PPP). In November 2013 the "Photonics 21 Association", a legal entity under Belgium law, became the private contract partner in a Public Private Partnership (PPP) in conjunction with the EU Commission.

Today Photonics21 represents more than 2500 personal members from all over Europe. Our members are experts in the photonics industry, research organisations and universities who actively engage with us to develop a joint photonics strategy for future research and innovation in Europe.

With the global photonics market growing at twice the world economic growth rate, from 350 Billion Euros in 2011 to 615 Euros in 2020, Photonics21 stands in a secure global market position. The production of European photonics alone accounts for 60 billion Euros and employs over 350,000 people directly.

With strong growth forecast, current industry trends like digitalisation, resource efficiency, individual and zero failure production will drive the photonics industry further.

For more information about Photonics21, please visit http://www.photonics21.org

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...