Computers can Tell if You're Bored

Computers are able to read a person's body language to tell whether they are bored or interested in what they see on the screen, according to a new study led by body-language expert Dr Harry Witchel, Discipline Leader in Physiology at Brighton and Sussex Medical School (BSMS).

The research shows that by measuring a person's movements as they use a computer, it is possible to judge their level of interest by monitoring whether they display the tiny movements that people usually constantly exhibit, known as non-instrumental movements.

If someone is absorbed in what they are watching or doing - what Dr Witchel calls 'rapt engagement' - there is a decrease in these involuntary movements.

Dr Witchel said: "Our study showed that when someone is really highly engaged in what they're doing, they suppress these tiny involuntary movements. It's the same as when a small child, who is normally constantly on the go, stares gaping at cartoons on the television without moving a muscle.

The discovery could have a significant impact on the development of artificial intelligence. Future applications could include the creation of online tutoring programmes that adapt to a person's level of interest, in order to re-engage them if they are showing signs of boredom. It could even help in the development of companion robots, which would be better able to estimate a person's state of mind.

Also, for experienced designers such as movie directors or game makers, this technology could provide complementary moment-by-moment reading of whether the events on the screen are interesting. While viewers can be asked subjectively what they liked or disliked, a non-verbal technology would be able to detect emotions or mental states that people either forget or prefer not to mention.

"Being able to 'read' a person's interest in a computer program could bring real benefits to future digital learning, making it a much more two-way process," Dr Witchel said. "Further ahead it could help us create more empathetic companion robots, which may sound very 'sci fi' but are becoming a realistic possibility within our lifetimes."

In the study, 27 participants faced a range of three-minute stimuli on a computer, from fascinating games to tedious readings from EU banking regulation, while using a handheld trackball to minimise instrumental movements, such as moving the mouse. Their movements were quantified over the three minutes using video motion tracking. In two comparable reading tasks, the more engaging reading resulted in a significant reduction (42%) of non-instrumental movement.

The study team also included two of Dr Witchel's team, Carlos Santos and Dr James Ackah, media expert Carina Westling from the University of Sussex, and the clinical biomechanics group at Staffordshire University led by Professor Nachiappan Chockalingam.

BSMS is a partnership between the Universities of Sussex and Brighton together with NHS organisations throughout the south-east region.

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...