Strokefinder Quickly Differentiates Bleeding Strokes from Clot-Induced Strokes

The results from the initial clinical studies involving the microwave helmet Strokefinder confirm the usefulness of microwaves for rapid and accurate diagnosis of stroke patients. This is shown in a scientific article being published on June 16. Strokefinder enables earlier diagnosis than current methods, which improves the possibility to counteract brain damage.

In the article, researchers from Chalmers University of Technology, Sahlgrenska Academy and Sahlgrenska University Hospital present results from the initial patient studies completed last year. The study included 45 patients, and the results show that the technique can with great certainty differentiate bleeding strokes from clot-induced strokes in patients with acute symptoms.

Strokefinder is placed on the patient's head where it examines the brain tissue by using microwaves. The signals are interpreted by the system to determine if the stroke is caused by a blood clot or bleeding.

"The results of this study show that we will be able to increase the number of stroke patients who receive optimal treatment when the instrument makes a diagnosis already in the ambulance," says Mikael Persson, professor of biomedical engineering at Chalmers University of Technology. "The possibility to rule out bleeding already in the ambulance is a major achievement that will be of great benefit in acute stroke care. Equally exciting is the potential application in trauma care."

The initial patient studies have been performed inside hospitals, and this autumn the research groups at Chalmers and Sahlgrenska Academy will test a mobile stroke helmet on patients in ambulances.

"Our goal with Strokefinder is to diagnose and initiate treatment of stroke patients already in the ambulance," says Mikael Elam, professor of clinical neurophysiology at Sahlgrenska University Hospital. "Since time is a critical factor for stroke treatment, the use of the instrument leads to patients suffering less extensive injury. This in turn can shorten the length of stay at hospitals and reduce the need for rehabilitation, thus providing a number of other positive consequences for both the patient and the health care system."

Studies involving Strokefinder are currently being conducted in Sweden at Sahlgrenska University Hospital and Södra Älvsborg Hospital. The research is being conducted in close collaboration between Chalmers University of Technology, Sahlgrenska Academy, Sahlgrenska University Hospital, Södra Älvsborg Hospital and MedTech West, which is a platform for collaboration in medical device R&D, with premises at Sahlgrenska University Hospital.

A new product, based on the results of the present study, has been developed, and further studies will be conducted in several countries in preparation for the CE approval that Medfield Diagnostics, a spin-off from Chalmers, expects to obtain later this year.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...