Scientists Develop a Software Tool for Estimating Heart Disease Risk

University of Granada researchers have developed a software tool that makes an accurate estimation of the risk that a person has to suffer a heart disease. In addition, this software tool allows the performance of massive risk estimations, i.e. it helps estimating the risk that a specific population group has of suffering a heart condition. The researchers employed a sample including 3 000 patients.

Heart conditions increasingly affect working age population, which can make individuals loss potential years of work and productivity.

Understanding the risk for heart conditions by simultaneously using different equations is a key factor in heart disease prevention, which would reduce health spending in the short and long term.

According to the researchers, "during the last decade, the approaches to cardiovascular disease prevention have evolved from isolated interventions on modifiable risk factors to an integral model of intervention strategies based on previous risk quantification and stratification."

One of the factors enabling this change is the increasing availability of tools for the quantification and stratification of the risk of suffering a cardiovascular disease; these tools evaluate a set of individual characteristics, the so-called risk factors. This is the framework of the study conducted at the University of Granada and recently published in the Journal of Evaluation in Clinical Practice.

In the field of epidemiologic studies aimed at predicting cardiovascular risk, a set of mathematical models had been developed in previous studies in the USA. The purpose of these models was to provide an estimation of the risk of suffering a cardiovascular event in the short term, i.e. 5-10 years, by assessing exposure to risk factors. University of Granada researchers used this model in their study.

The researchers performed a comparative study of the behavior of different equations applied to a group of "at-risk" patients referred to an Endocrinology Service from a primary care center in Granada, Spain. Risk factors were obesity, high blood pressure, diabetes and lipid profile alterations.

The authors of this study are University of Granada professors Jesús María Ramírez Rodrigo, José Antonio Moreno Vázquez, Alberto Ruiz Villaverde, María de los Ángeles Sánchez Caravaca, Martín López de la Torre Casares and Carmen Villaverde Gutiérrez.

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...