AI Finds Hundreds of Potential Antibiotics in Snake and Spider Venom

Snake, scorpion, and spider venom are most frequently associated with poisonous bites, but with the help of artificial intelligence, they might be able to help fight antibiotic resistance, which contributes to more than one million deaths worldwide each year.

In a study published in Nature Communications, researchers at the University of Pennsylvania used a deep-learning system called APEX to sift through a database of more than 40 million venom encrypted peptides (VEPs), tiny proteins evolved by animals for attack or as a defense mechanism. In a matter of hours, the algorithm flagged 386 compounds with the molecular hallmarks of next-generation antibiotics.

"Venoms are evolutionary masterpieces, yet their antimicrobial potential has barely been explored," said senior author César de la Fuente, PhD, a Presidential Associate Professor of Psychiatry, Microbiology, Bioengineering, Chemical and Biomolecular Engineering, and Chemistry. "APEX lets us scan an immense chemical space in just hours and identify peptides with exceptional potential to fight the world’s most stubborn pathogens."

From the AI-selected shortlist, the team synthesized 58 venom peptides for laboratory testing. 53 killed drug-resistant bacteria - including Escherichia coli and Staphylococcus aureus - at doses that were harmless to human red blood cells.

"By pairing computational triage with traditional lab experimentation, we delivered one of the most comprehensive investigations of venom derived antibiotics to date," added co-author Marcelo Torres, PhD, a research associate at Penn. Changge Guan, PhD, a postdoctoral researcher in the De la Fuente Lab and co-author, noted that the platform mapped more than 2,000 entirely new antibacterial motifs - short, specific sequences of amino acids within a protein or peptide responsible for their ability to kill or inhibit bacterial growth.

The team is now taking the top peptide candidates which could lead to new antibiotics and improving them through medicinal-chemistry tweaks.

Support included funding from the Procter & Gamble Company, United Therapeutics, a BBRF Young Investigator Grant, the Nemirovsky Prize, Penn Health-Tech Accelerator Award, Defense Threat Reduction Agency grants HDTRA11810041 and HDTRA1-23-1-0001, and the Dean’s Innovation Fund from the Perelman School of Medicine at the University of Pennsylvania. Research reported in this publication was supported by the Langer Prize (AIChE Foundation), the NIH R35GM138201, and DTRA HDTRA1-21-1-0014.

Cesar de la Fuente provides consulting services to Invaio Sciences and is a member of the Scientific Advisory Boards of Nowture S.L. and Phare Bio. The de la Fuente Lab has received research funding or in-kind donations from United Therapeutics, Strata Manufacturing PJSC, and Procter & Gamble, none of which were used in support of this work. An invention disclosure associated with this work has been filed.

Guan C, Torres MDT, Li S, de la Fuente-Nunez C.
Computational exploration of global venoms for antimicrobial discovery with Venomics artificial intelligence.
Nat Commun. 2025 Jul 12;16(1):6446. doi: 10.1038/s41467-025-60051-6

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...