AI Tool Accurately Detects Tumor Location on Breast MRI

An AI model trained to detect abnormalities on breast MR images accurately depicted tumor locations and outperformed benchmark models when tested in three different groups, according to a study published today in Radiology, a journal of the Radiological Society of North America (RSNA).

"AI-assisted MRI could potentially detect cancers that humans wouldn’t find otherwise," said the study's lead investigator Felipe Oviedo, Ph.D., a senior research analyst at Microsoft's AI for Good Lab.

Screening mammography is considered the standard of care in breast cancer screening. However, mammography is less effective in patients with dense breasts. Breast density is an independent risk factor for breast cancer and can mask a tumor. Physicians may order breast MRI to supplement screening mammography for women who have dense breasts and those at high risk for cancer.

"MRI is more sensitive than mammography," Dr. Oviedo said. "But it’s also more expensive and has a higher false-positive rate."

To enhance the accuracy and efficiency of screening breast MRI, Dr. Oviedo’s research team closely collaborated with clinical investigators in the Department of Radiology at the University of Washington to develop an explainable AI anomaly detection model. Anomaly detection models distinguish between normal and abnormal data, flagging the anomalies, or abnormalities, for further investigation.

"Previously developed models were trained on data of which 50% were cancer cases and 50% were normal cases, which is a very unrealistic distribution," Dr. Oviedo said. "Those models haven’t been rigorously evaluated in low-prevalence cancer or screening populations (where 2% of all cases or less are cancer), and they also lack interpretability, both of which are essential for clinical adoption."

To address these limitations, the researchers trained their model using data from nearly 10,000 consecutive contrast-enhanced breast MRI exams performed at the University of Washington between 2005 and 2022. Patients were predominately white (greater than 80%), and 42.9% had heterogeneously dense breasts, while 11.6% had extremely dense breasts.

"Unlike traditional binary classification models, our anomaly detection model learned a robust representation of benign cases to better identify abnormal malignancies, even if they are underrepresented in the training data," Dr. Oviedo said. "Since malignancies can occur in multiple ways and are scarce in similar datasets, the type of anomaly detection model proposed in the study is a promising solution."

In addition to providing an estimated anomaly score, the detection model produces a spatially resolved heatmap for an MR image. This heatmap highlights in color the regions in the image that the model believes to be abnormal. The abnormal regions identified by the model matched areas of biopsy-proven malignancy annotated by a radiologist, largely surpassing the performance of benchmark models.

The model was tested on internal and external datasets. The internal dataset consisted of MRI exams performed on 171 women (mean age 48.8) for screening (71.9%; 31 cancers confirmed on subsequent biopsy) or pre-operative evaluation for a known cancer (28.1%; 50 cancers confirmed by biopsy). The external, publicly available, multicenter dataset included pre-treatment breast MRI exams of 221 women with invasive breast cancer.

The anomaly detection model accurately depicted tumor location and outperformed benchmark models in grouped cross-validation, internal and external test datasets, and in both balanced (high prevalence of cancer) and imbalanced (low cancer prevalence) detection tasks.

If integrated into radiology workflows, Dr. Oviedo said the anomaly detection model could potentially exclude normal scans for triage purposes and improve reading efficiency.

"Our model provides an understandable, pixel-level explanation of what’s abnormal in a breast," he said. "These anomaly heatmaps could highlight areas of potential concern, allowing radiologists to focus on those exams that are more likely to be cancer."

Before clinical application, he said the model needs to be evaluated in larger datasets and prospective studies to assess its potential for enhancing radiologists' workflow.

Oviedo F, Kazerouni AS, Liznerski P, Xu Y, Hirano M, Vandermeulen RA, Kloft M, Blum E, Alessio AM, Li CI, Weeks WB, Dodhia R, Lavista Ferres JM, Rahbar H, Partridge SC.
Cancer Detection in Breast MRI Screening via Explainable AI Anomaly Detection.
Radiology. 2025 Jul;316(1):e241629. doi: 10.1148/radiol.241629

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

AI Tool Accurately Detects Tumor Locatio…

An AI model trained to detect abnormalities on breast MR images accurately depicted tumor locations and outperformed benchmark models when tested in three different groups, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

AI can Accelerate Search for More Effect…

Scientists have used an AI model to reassess the results of a completed clinical trial for an Alzheimer’s disease drug. They found the drug slowed cognitive decline by 46% in...

Free AI Tools can Help Doctors Read Medi…

A new study from the University of Colorado Anschutz Medical Campus shows that free, open-source artificial intelligence (AI) tools can help doctors report medical scans just as well as more...

Autonomous AI Agents in Healthcare

The use of large language models (LLMs) and other forms of generative AI (GenAI) in healthcare has surged in recent years, and many of these technologies are already applied in...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...