AI Matches Doctors in Mapping Lung Tumors for Radiation Therapy

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called tumor segmentation, is still done manually, takes time, varies between doctors - and can lead to critical tumor areas being overlooked.

Now, a team of Northwestern Medicine scientists has developed an AI tool called iSeg that not only matches doctors in accurately outlining lung tumors on CT scans but can also identify areas that some doctors may miss, reports a large new study.

Unlike earlier AI tools that focused on static images, iSeg is the first 3D deep learning tool shown to segment tumors as they move with each breath - a critical factor in planning radiation treatment, which half of all cancer patients in the U.S. receive during their illness.

"We're one step closer to cancer treatments that are even more precise than any of us imagined just a decade ago," said senior author Dr. Mohamed Abazeed, chair and professor of radiation oncology at Northwestern University Feinberg School of Medicine.

"The goal of this technology is to give our doctors better tools," added Abazeed, who leads a research team developing data-driven tools to personalize and improve cancer treatment and is a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

The study will be published June 30 in the journal npj Precision Oncology.

The Northwestern scientists trained iSeg using CT scans and doctor-drawn tumor outlines from hundreds of lung cancer patients treated at nine clinics within the Northwestern Medicine and Cleveland Clinic health systems. That’s far beyond the small, single-hospital datasets used in many past studies.

After training, the AI was tested on patient scans it hadn’t seen before. Its tumor outlines were then compared to those drawn by physicians. The study found that iSeg consistently matched expert outlines across hospitals and scan types. It also flagged additional areas that some doctors missed - and those missed areas were linked to worse outcomes if left untreated. This suggests iSeg may help catch high-risk regions that often go unnoticed.

"Accurate tumor targeting is the foundation of safe and effective radiation therapy, where even small errors in targeting can impact tumor control or cause unnecessary toxicity," Abazeed said.

"By automating and standardizing tumor contouring, our AI tool can help reduce delays, ensure fairness across hospitals and potentially identify areas that doctors might miss - ultimately improving patient care and clinical outcomes," added first author Sagnik Sarkar, a senior research technologist at Feinberg who holds a Master of Science in artificial intelligence from Northwestern.

The research team is now testing iSeg in clinical settings, comparing its performance to physicians in real time. They are also integrating features like user feedback and working to expand the technology to other tumor types, such as liver, brain and prostate cancers. The team also plans to adapt iSeg to other imaging methods, including MRI and PET scans.

"We envision this as a foundational tool that could standardize and enhance how tumors are targeted in radiation oncology, especially in settings where access to subspecialty expertise is limited," said co- author Troy Teo, instructor of radiation oncology at Feinberg.

"This technology can help support more consistent care across institutions, and we believe clinical deployment could be possible within a couple of years," Teo added.

Sarkar S, Teo PT, Abazeed ME.
Deep learning for automated, motion-resolved tumor segmentation in radiotherapy.
NPJ Precis Oncol. 2025 Jun 30;9(1):173. doi: 10.1038/s41698-025-00970-1

Most Popular Now

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...