SIMAP

SIMAP will develop a simulation model of the cancer related MAP-kinase pathway, integrating and analyzing data from various types of resources, which may assist in the development of better cancer treatment.

The completion of the human genome gave hope for a new age of medical understanding, but 4-5 years later costs of drug development are still rising and the success rate has not improved. Drugs that have already hit the market are found to have major side effects not perceived in the past and are often given to patients without discrimination on their likeliness to respond.

Large scale methodologies that thrive in recent years, allowed the industry and academia to gather more information on RNAs and proteins. However, the understanding of the molecular and cellular processes is still lacking, not to mention the connection to the clinical outcome. In order to fully use this data, a comprehensive integration and modelling effort is needed. A systematic rational hypothesis-driven research approach connecting all those levels of information is a much needed computational tool. This is the main goal of SIMAP project.

The ultimate goal of SIMAP is to develop a comprehensive simulation biochemical model of EGFRMAP kinase pathway in connection to cancer clinical information. SIMAP will:

  • Incorporate low-level biochemical modelling of individual molecules;
  • Simulate the behaviour of the pathway;
  • Add genomic and proteomic data;
  • Incorporate individual patients’ responses; and
  • Analyze sub population of responses in the context of the biochemical behaviour and genotype data

For further information, please visit:
http://www.simap-project.org

Project co-ordinator:
Compugen Ltd.

Partners:

  • Aureus Pharma, (FR)
  • Compugen Ltd., (IL)
  • Consejo Superior de Investigaciones Científicas, (ES)
  • Halevi Dweck & Co.Arttic Israel Company Ltd., (IL)
  • Fundacio Institut De Recerca De L'Hospital Universitari Vall D'Hebron, (ES)
  • Fondazione IRCCS Istituto Nazionale Dei Tumori, (IT)
  • The Max-Planck Institute for Infection Biology, (DE)
  • The University of Glasgow, (UK)
  • The Weizmann Institute of Science, (IL)

Timetable: from 01/06 – to 12/08

Total cost: € 4.464.201

EC funding: € 3.126.662

Instrument: STREP

Project Identifier: IST-2004-027265

Source: FP6 eHealth Portfolio of Projects

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...