SIMAP

SIMAP will develop a simulation model of the cancer related MAP-kinase pathway, integrating and analyzing data from various types of resources, which may assist in the development of better cancer treatment.

The completion of the human genome gave hope for a new age of medical understanding, but 4-5 years later costs of drug development are still rising and the success rate has not improved. Drugs that have already hit the market are found to have major side effects not perceived in the past and are often given to patients without discrimination on their likeliness to respond.

Large scale methodologies that thrive in recent years, allowed the industry and academia to gather more information on RNAs and proteins. However, the understanding of the molecular and cellular processes is still lacking, not to mention the connection to the clinical outcome. In order to fully use this data, a comprehensive integration and modelling effort is needed. A systematic rational hypothesis-driven research approach connecting all those levels of information is a much needed computational tool. This is the main goal of SIMAP project.

The ultimate goal of SIMAP is to develop a comprehensive simulation biochemical model of EGFRMAP kinase pathway in connection to cancer clinical information. SIMAP will:

  • Incorporate low-level biochemical modelling of individual molecules;
  • Simulate the behaviour of the pathway;
  • Add genomic and proteomic data;
  • Incorporate individual patients’ responses; and
  • Analyze sub population of responses in the context of the biochemical behaviour and genotype data

For further information, please visit:
http://www.simap-project.org

Project co-ordinator:
Compugen Ltd.

Partners:

  • Aureus Pharma, (FR)
  • Compugen Ltd., (IL)
  • Consejo Superior de Investigaciones Científicas, (ES)
  • Halevi Dweck & Co.Arttic Israel Company Ltd., (IL)
  • Fundacio Institut De Recerca De L'Hospital Universitari Vall D'Hebron, (ES)
  • Fondazione IRCCS Istituto Nazionale Dei Tumori, (IT)
  • The Max-Planck Institute for Infection Biology, (DE)
  • The University of Glasgow, (UK)
  • The Weizmann Institute of Science, (IL)

Timetable: from 01/06 – to 12/08

Total cost: € 4.464.201

EC funding: € 3.126.662

Instrument: STREP

Project Identifier: IST-2004-027265

Source: FP6 eHealth Portfolio of Projects

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...