Every cell contains a vast number of proteins, each of which has a specific function, for example as a receptor for another molecule or an enzyme that catalyses chemical reactions. Disorders of such mechanisms can seriously affect a cell and cause diseases such as cancer, in which the sick cell functions in a fundamentally different way to a healthy cell.
UT Southwestern researchers have developed a software tool that uses artificial intelligence to recognize cancer cells from digital pathology images - giving clinicians a powerful way of predicting patient outcomes.
Traumatic brain injury (TBI) is a significant global cause of mortality and morbidity with an increasing incidence, especially in low-and-middle income countries. The most severe TBIs are treated in intensive care units (ICU), but in spite of the proper and high-quality care, about one in three patients dies.
With a shortage of new tuberculosis drugs in the pipeline, a software tool from the University of Michigan can predict how current drugs - including unlikely candidates - can be combined in new ways to create more effective treatments.
"This could replace our traditional trial-and-error system for drug development that is comparatively slow and expensive," said Sriram Chandrasekaran, U-M assistant professor of biomedical engineering, who leads the research.
Artificial Intelligence can be used to predict molecular wave functions and the electronic properties of molecules. This innovative AI method developed by a team of researchers at the University of Warwick, the Technical University of Berlin and the University of Luxembourg, could be used to speed-up the design of drug molecules or new materials.
The transition to electronic health records (EHRs) was supposed to improve the quality and efficiency of healthcare for doctors and patients alike - but these technologies get an "F" rating for usability from health care professionals, and may be contributing to high rates of professional burnout, according to a new Yale-led study.
Using ground-breaking technology, researchers at the University of Maryland, Baltimore County (UMBC) and University of Baltimore (UMB) are testing a new method of X-ray imaging that uses color to identify microfractures in bones. Microfractures were previously impossible to see using standard X-ray imaging.