A Better Testing Method for Patients with Parkinson's Disease

Parkinson's disease is a neurodegenerative disorder that manifests through symptoms such as tremor, slow movements, limb rigidity and gait and balance problems. As such, nearly all diagnostic testing revolves around how a patient moves and requires the patient to walk for extensive distances and amounts of time. The discomfort caused to patients by this kind of testing is unacceptable, according to an international team of researchers based in Saudi Arabia and Sweden.

They proposed a new kind of computational analysis based on less physically-demanding testing in IEEE/CAA Journal of Automatica Sinica, a joint publication of the Institute of Electrical and Electronics Engineers (IEEE) and the Chinese Association of Automation (CAA).

"Apart from gait and balance data, the measurement of computer keystroke time series that contain information of the hold time occurring between pressing and releasing a key has been proposed for detecting early stages of Parkinson's disease," said Tuan D. Pham, paper author and professor of biomedical engineering in the Center for Medical Image Science and Visualization at Linköping University in Sweden.

"Being similar to the motivation for determining the minimum number of strides for the analysis of gait dynamics, our study was interested in answering the question if there are methods that can process very short time series and achieve good results for differentiating healthy controls from subjects with early Parkinson's disease."

The disease itself is not fatal, but complications from Parkinson's disease can be serious. It affects about 10 million people across the globe, and it can take years for the disease to progress to a symptomatic state - making early detection a top priority for researchers.

In this experiment, subjects press one or two buttons on a device such as an iPhone as fast as possible for a short period of time. Pham and the team took these data and analyzed them through fuzzy recurrence plots, which take multiple short-time series data points and translate them into a two-dimensional grey-scale images of texture. In the image, related points appear as a dense grey, with more disparate data points becoming fuzzier. The algorithm used for the fuzzy recurrence plots learns how the data points connect and can help provide difference and similarities in subject groups such as people with early Parkinson's disease and those without.

"While having a very short length, the time series is augmented with a relatively large number of feature dimensions," Pham said. "The results obtained from the fuzzy recurrence plots are encouraging for the collection of practical data recorded from participants and their usage for the classification task."

The team plans to further study the use of fuzzy recurrence plots and improve the algorithm to better determine a subject's disease state. They also plan to extend the research to study gait dynamics of patients with Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis, also known as Lou Gehrig's disease.

Tuan D Pham, Karin Wårdell, Anders Eklund, Göran Salerud.
Classification of short time series in early Parkinson's disease with deep learning of fuzzy recurrence plots.
IEEE/CAA Journal of Automatica Sinica, 2019. doi: 10.1109/JAS.2019.1911774.

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...