Refining Breast Cancer Classification by Multiplexed Imaging

Breast cancer progression can vary significantly between patients. Even within the same tumor, different areas may be composed of different types of cells and characterized by different tumor structures. This heterogeneity makes it challenging to ascertain the severity of a tumor and assess its molecular subtype, thereby affecting the precision of diagnosis and the choice of the most effective treatment approach. More detailed characterization of a breast cancer tissue could help improve a treatment's chances of success and may decrease the risk of relapse.

The research group headed by Bernd Bodenmiller, professor of quantitative biology at UZH, has been able to refine the pathological classification of breast cancer using imaging mass cytometry. This method enables scientists to simultaneously visualize and analyze multiple biomarkers to generate information-rich digital images of tissue sections. In their study, the researchers quantified 35 protein biomarkers in breast cancer patients. "This created an unprecedented view of a tumor's cellular landscape and the surrounding tissue, which enabled us to determine whether more complex biomarkers exist for clinical outcome," explains Jana Fischer, co-first author of the study.

The team of researchers analyzed hundreds of tissue sections from 350 breast cancer patients and categorized the many cell components and how they are organized in cellular communities and form tumor tissues. "Four categories of breast cancer are routinely classified in the clinic, but our new analysis allows us to go further and identify multiple detailed subcategories of breast cancer. The danger from these diverse tumors can be very different, and each type could respond to therapy in its own way," explains co-first author Hartland Jackson.

This finding has the potential to change clinical practice. The new subgroups of breast cancer patients vary in their molecular profiles. Bernd Bodenmiller and his research team are now working on finding out which drugs are best able to combat tumor cells with a specific molecular profile. "By improving our ability to describe cellular features and categories as well as our ability to precisely identify patients that have high or low risk breast cancer, we're opening up new possibilities for precision medicine," says Bodenmiller.

Hartland W Jackson, Jana R Fischer, Vito RT Zanotelli, H Raza Ali, Robert Mechera, Savas D Soysal, Holger Moch, Simone Muenst, Zsuzsanna Varga, Walter P Weber, Bernd Bodenmiller.
The single-cell pathology landscape of breast cancer.
Nature, 2020. doi: 10.1038/s41586-019-1876-x.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...