Artificial Intelligence (AI) can Detect Low-Glucose Levels via ECG without Fingerpick Test

A new technology for detecting low glucose levels via ECG using a non-invasive wearable sensor, which with the latest Artificial Intelligence can detect hypoglycaemic events from raw ECG signals has been made by researchers from the University of Warwick.

Currently Continuous Glucose Monitors (CGM) are available by the NHS for hypoglycaemia detection (sugar levels into blood or derma). They measure glucose in interstitial fluid using an invasive sensor with a little needle, which sends alarms and data to a display device. In many cases, they require calibration twice a day with invasive finger-prick blood glucose level tests.

However, Dr Leandro Pecchia's team at the University of Warwick have today, the 13th January 2020 published results in a paper titled 'Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG' in the Nature Springer journal Scientific Reports proving that using the latest findings of Artificial Intelligence (i.e., deep learning), they can detect hypoglycaemic events from raw ECG signals acquired with off-the-shelf non-invasive wearable sensors.

Two pilot studies with healthy volunteers found the average sensitivity and specificity approximately 82% for hypoglycaemia detection, which is comparable with the current CGM performance, although non-invasive.

Dr Leandro Pecchia from the School of Engineering at the University of Warwick comments: "Fingerpicks are never pleasant and in some circumstances are particularly cumbersome. Taking fingerpick during the night certainly is unpleasant, especially for patients in paediatric age.

"Our innovation consisted in using artificial intelligence for automatic detecting hypoglycaemia via few ECG beats. This is relevant because ECG can be detected in any circumstance, including sleeping."

The figure shows the output of the algorithms over the time: the green line represents normal glucose levels, while the red line represents the low glucose levels. The horizontal line represents the 4mmol/L glucose value, which is considered the significant threshold for hypoglycaemic events. The grey area surrounding the continuous line reflects the measurement error bar.

The Warwick model highlights how the ECG changes in each subject during a hypoglycaemic event. The figure below is an exemplar. The solid lines represent the average heartbeats for two different subjects when the glucose level is normal (green line) or low (red line). The red and green shadows represent the standard deviation of the heartbeats around the mean. A comparison highlights that these two subjects have different ECG waveform changes during hypo events. In particular, Subject 1 presents a visibly longer QT interval during hypo, while the subject 2 does not.

The vertical bars represent the relative importance of each ECG wave in determining if a heartbeat is classified as hypo or normal.

From these bars, a trained clinician sees that for Subject 1, the T-wave displacement influences classification, reflecting that when the subject is in hypo, the repolarisation of the ventricles is slower.

In Subject 2, the most important components of the ECG are the P-wave and the rising of the T-wave, suggesting that when this subject is in hypo, the depolarisation of the atria and the threshold for ventricular activation are particularly affected. This could influence subsequent clinical interventions.

This result is possible because the Warwick AI model is trained with each subject's own data. Intersubjective differences are so significant, that training the system using cohort data would not give the same results. Likewise, personalised therapy based on our system could be more effective than current approaches.

Dr Leandro Pecchia comments: "The differences highlighted above could explain why previous studies using ECG to detect hypoglycaemic events failed. The performance of AI algorithms trained over cohort ECG-data would be hindered by these inter-subject differences.

"Our approach enable personalised tuning of detection algorithms and emphasize how hypoglycaemic events affect ECG in individuals. Basing on this information, clinicians can adapt the therapy to each individual. Clearly more clinical research is required to confirm these results in wider populations. This is why we are looking for partners."

Mihaela Porumb, Saverio Stranges, Antonio Pescapè, Leandro Pecchia.
Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG.
Sci Rep 10, 170, 2020. doi: 10.1038/s41598-019-56927-5.

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...