Finally, Machine Learning Interprets Gene Regulation Clearly

In this age of "big data," artificial intelligence (AI) has become a valuable ally for scientists. Machine learning algorithms, for instance, are helping biologists make sense of the dizzying number of molecular signals that control how genes function. But as new algorithms are developed to analyze even more data, they also become more complex and more difficult to interpret. Quantitative biologists Justin B. Kinney and Ammar Tareen have a strategy to design advanced machine learning algorithms that are easier for biologists to understand.

The algorithms are a type of artificial neural network (ANN). Inspired by the way neurons connect and branch in the brain, ANNs are the computational foundations for advanced machine learning. And despite their name, ANNs are not exclusively used to study brains.

Biologists, like Tareen and Kinney, use ANNs to analyze data from an experimental method called a "massively parallel reporter assay" (MPRA) which investigates DNA. Using this data, quantitative biologists can make ANNs that predict which molecules control specific genes in a process called gene regulation.

Cells don't need all proteins all the time. Instead, they rely on complex molecular mechanisms to turn the genes that produce proteins on or off, as needed. When those regulations fail, disorder and disease usually follow.

"That mechanistic knowledge - understanding how something like gene regulation works - is very often the difference between being able to develop molecular therapies against diseases, and not being able to," Kinney said.

Unfortunately the way standard ANNs are shaped from MPRA data is very different from how scientists ask questions in the life sciences. This misalignment means that biologists find it difficult to interpret how gene regulation occurs.

Now, Kinney and Tareen developed a new approach that bridges the gap between computational tools and how biologists think. They created custom ANNs that mathematically reflect common concepts in biology concerning genes and the molecules that control them. In this way, the pair are essentially forcing their machine learning algorithms to process data in a way that a biologist can understand.

These efforts, Kinney explained, highlight how modern, industrial AI technologies can be optimized for use in the life sciences. Having verified this new strategy to make custom ANNs, Kinney's lab is applying it in investigating a wide variety of biological systems, including key gene circuits involved in human disease.

Ammar Tareen, Justin B Kinney.
Biophysical models of cis-regulation as interpretable neural networks.
bioRxiv 835942; doi: 10.1101/835942.

Most Popular Now

IBM Watson Health Recognizes Top-Perform…

IBM (NYSE: IBM) Watson Health® announced its 2020 Fortune/IBM Watson Health 100 Top Hospitals list and 15 Top Health Systems award winners, naming the top-performing hospitals and health systems in...

Chatbots can Ease Medical Providers' Bur…

COVID-19 has placed tremendous pressure on health care systems, not only for critical care but also from an anxious public looking for answers. Research from the Indiana University Kelley School...

Abbott Receives FDA Approval for New Hea…

Abbott (NYSE: ABT) announced that the U.S. Food and Drug Administration (FDA) has approved the company's next-generation Gallant™ implantable cardioverter defibrillator (ICD) and cardiac resynchronization therapy defibrillator (CRT-D) devices. The...

The New Tattoo: Drawing Electronics on S…

One day, people could monitor their own health conditions by simply picking up a pencil and drawing a bioelectronic device on their skin. In a new study, University of Missouri...

Towards an AI Diagnosis Like the Doctor…

Artificial intelligence (AI) is an important innovation in diagnostics, because it can quickly learn to recognize abnormalities that a doctor would also label as a disease. But the way that...

SARS-CoV-2 Antibody Test from Siemens He…

Public Health England, in partnership with the University of Oxford, recently conducted a head-to-head evaluation of four commercial immunoassay tests available in the UK and used for the detection of...

Researchers Develop Software to Find Dru…

Washington State University researchers have developed an easy-to-use software program to identify drug-resistant genes in bacteria. The program could make it easier to identify the deadly antimicrobial resistant bacteria that...

Philips Introduces First-of-a-Kind Mobil…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it introduced first-of-its-kind mobile Intensive Care Units (ICUs) in India. Designed to meet the critical-care requirements...

Proposed Framework for Integrating Chatb…

While the technology for developing artificial intelligence-powered chatbots has existed for some time, a new viewpoint piece in JAMA lays out the clinical, ethical, and legal aspects that must be...

Clinical-Grade Wearables Offer Continuou…

Although it might be tempting to rely on your fitness tracker to catch early signs of COVID-19, Northwestern University researchers caution that consumer wearables are not sophisticated enough to monitor...

World's Smallest Imaging Device has Hear…

A team of researchers led by the University of Adelaide and University of Stuttgart has used 3D micro-printing to develop the world's smallest, flexible scope for looking inside blood vessels...

Optimizing Neural Networks on a Brain-In…

Many computational properties are maximized when the dynamics of a network are at a "critical point", a state where systems can quickly change their overall characteristics in fundamental ways, transitioning...