New International eHealth Neuro-Musculo-Skeletal Physiome Project

Neuro-Musculo-Skeletal Physiome, or NMS Physiome for short, officially started on January 27th, 2010. This is a VPH Internationalisation cooperation project between the European integrated project VPHOP, and the United States NIH Center for physics-based Simulation of Biological Structures, SIMBIOS.

VPHOP and SIMBIOS are two of the largest research projects worldwide developing technology for personalised, predictive, and integrative musculoskeletal medicine. These two projects are targeting the same strategic objective and developing highly complementary technologies. This unique condition creates an compelling opportunity for international collaboration, one which would dramatically increase the international impact of the work being done by the VPHOP project, and foster global cooperation on one of the grand challenges of biomedical research.

VPHOP, formed by a consortium of 19 partner institutions led by the Rizzoli Orthopaedic Institute, is developing the next generation of health technologies to fight osteoporosis. As part of this endeavour, the personalised modelling of the patient's neuro-musculo-skeletal system is essential.

SIMBIOS provides infrastructure, software, and training to help biomedical researchers understand biological form and function as they create novel drugs, synthetic tissues, medical devices, and surgical interventions. The cluster of projects connected to the SIMBIOS center is investigating a wide scale of biological structures - from molecules to organisms. Driving biological problems include RNA folding, protein folding, myosin dynamics, cardiovascular dynamics, and neuromuscular biomechanics. In particular, the team of one of the two Principal Investigators of SIMBIOS, Scott Delp, based at Stanford University, focuses on the accurate modelling of the neuro-musculo-skeletal system.

In addition to the Rizzoli Orthopedic Institute and to Stanford University, the NMS Physiome project will see the participation of Empirica, SCS, and the University of Bedfordshire, all members of the VPHOP consortium.

NMS Physiome three-years activity will revolve primarily around three objectives:

  • Integrate the community web services developed by VPHOP and SIMBIOS to make teamwork across the two projects easier.
  • Integrate the software tools, MAF and OpenSIM/FEBio, developed in the two projects in order to obtain a better collective tool chest for neuromusculoskeletal modelling.
  • Combining the latest research achievements of the two consortia to better face the grand challenges the multiscale modelling of the musculoskeletal system poses, such as the efficient multiscale modelling of the musculoskeletal system, the creation of accurate patient-specific models from clinically available data, and the development of modelling methods to cope with the probabilistic nature of the neuromotor function.

For further information, please visit:
http://www.biomedtown.org/biomed_town/nmsphysiome/

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...