British Scientists Use Mould to Create Biological Robot

Slime mould usually gets a bad rap but this microscopic fungus is a star player in the scientific world. British researchers have announced they will use slime mould to design the first ever biological robot: a development that will impact the field of computational robotics.

The scientists from the University of the West of England (UWE) Bristol presented 'plasmobot', an amorphous, non-silicon biological robot. The key ingredient in their design was plasmodium, which is the vegetative stage of the slime mould Physarum polycephalum that is commonly found in forests and gardens in the UK.

Project leader Andy Adamatzky of the Department of Computer Science at UWE Bristol said the team's previous work proved how mould is capable of having computational skills. "Most people's idea of a computer is a piece of hardware with software designed to carry out specific tasks. This mould, or plasmodium, is a naturally occurring substance with its own embedded intelligence," he explained.

"It propagates and searches for sources of nutrients and when it finds such sources it branches out in a series of veins of protoplasm," Professor Adamatzky added. "The plasmodium is capable of solving complex computational tasks, such as the shortest path between points and other logical calculations."

The team succeeded in making the mould transport objects in previous experiments, he said. "By feeding it oat flakes, it grows tubes which oscillate and make it move in a certain direction carrying objects with it," Professor Adamatzy said. "We can also use light or chemical stimuli to make it grow in a certain direction."

The plasmobot could sense and span objects, and transport small objects along pre-programmed directions, according to the UWE researcher. "The robots will have parallel inputs and outputs, a network of sensors and the number of crunching power of super computers," he said. "The plasmobot will be controlled by spatial gradients of light, electro-magnetic fields and the characteristics of the substrate on which it is placed."

Professor Adamatzy pointed out that the plasmobot will be a "fully controllable and programmable amorphous intelligent robot with an embedded massively parallel computer."

This latest development will clear the path for the team to conduct further experiments on how mould can be controlled and used for its computational abilities.

"We are at the very early stages of our understanding of how the potential of the plasmodium can be applied, but in years to come we may be able to use the ability of the mould for example to deliver a small quantity of a chemical substance to a target, using light to help to propel it, or the movement could be used to help assemble micro-components of machines," Professor Adamatzky remarked.

The next development would be to harness the power of plasmodia within the human body. The delivery of drugs to certain parts of the body is an example.

"It might also be possible for thousands of tiny computers made of plasmodia to live on our skin and carry out routine tasks freeing up our brain for other things," Professor Adamatzy surmised. "Many scientists see this as a potential development of amorphous computing, but it purely theoretical at the moment."

For further information, please visit:
University of the West of England, http://www.uwe.ac.uk

Copyright ©European Communities, 2009
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...