CD-MEDICS

The overall concept of the CD-MEDICS IP is to develop a technology platform for point-of-care diagnostics, capable of simultaneous genomic and proteomic detection, with embedded communication abilities for direct interfacing with hospital information systems. This will be achieved by exploiting breakthroughs at the confluences of bio-, micro- and nano- technologies to create a low-cost non-invasive intelligent diagnosis system.

This platform will be developed in a modular format, which will allow each module to be developed and exploited individually. The modules will subsequently be integrated to facilitate the desired application. Advances in data communications, molecular biology and biosensor technology, with the integration of nanostructured functional components in macro and microsystems, will facilitate the realisation of a minimally invasive generic platform, which is capable of multi-parametric monitoring and will be interoperable with electronic medical records.

The advantages of integrated biosensor systems include their ease of use, their sensitivity, their inherent selectivity (preventing problems due to interfering substances), their versatility (allowing `in-field¿ use) and their cost effectiveness. Addressing the future health care requirement of an individualised theranostic approach, the specific application that will be demonstrated in this IP will be for the management, monitoring and diagnosis of coeliac disease, with the proposed technology contributing to significant advances in sensitivity and specificity of diagnosis. The technology platform developed, however, could be applied to a variety of clinical screening applications, such as cancer. The radical innovation proposed in this IP will result in a concrete prime deliverable of a technology platform of wide application and unquestionable socio-economic benefit, increasing European competitiveness whilst contributing considerably to the quality of life well being of the population.

For further information, please visit:
http://www.cdmedics.eu

Project co-ordinator:
Universitat Rovira i Virgili

Partners:

  • Institut für Mikrotechnik Mainz GmbH
  • Microfluidic ChipShop GmbH
  • Newcastle University
  • Intracom Telecom solutions
  • Clemens GmbH
  • Micro2Gen
  • Eurospital SpA
  • King's College London Business Ltd
  • INNO-TRAIN Diagnostik GmbH
  • TATAA Biocenter
  • MultiD Analyses AB
  • Finnish Red Cross Blood Service
  • Fondazione IRCCS Policlinico San Matteo
  • University Medical Centre Maribor
  • Valentia Technologies Limited
  • Association of European Coeliac Societies
  • Coeliac UK
  • Asociación de celíacos de Madrid
  • iXscient Ltd.
  • Newcastle upon Tyne Hospitals NHS Foundation Trust

Timetable: from 01/2008 – to 12/2011

Total cost: € 12.796.559

EC funding: € 9.500.000

Programme Acronym: FP7-ICT

Subprogramme Area: Personal health systems for monitoring and point-of-care diagnostics

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Orion Health Supports Professional Recor…

Orion Health is supporting the Professional Record Standards Body's partnership scheme by applying to become a 'quality partner'. The company, which is one of the UK’s leading providers of shared care...

FDA Authorizes Software that Can Help Id…

Today, the U.S. Food and Drug Administration authorized marketing of software to assist medical professionals who examine body tissues (pathologists) in the detection of areas that are suspicious for cancer...

Northumbria Healthcare Picks CliniSys to…

Pathologists at one of England's most innovative trusts have chosen the CliniSys laboratory information system (LIMS) as part of a digital strategy to support its drive to continually improve patient...

Study Finds Telemedicine Appointments Re…

Telemedicine appointments combined with in-person visits significantly reduced the risk of further illness for children with medically complex cases, according to results of a new study by researchers with The...

Contact-Tracing Apps could Improve Vacci…

Mathematical modeling of disease spread suggests that herd immunity could be achieved with fewer vaccine doses by using Bluetooth-based contact-tracing apps to identify people who have more exposure to others...

A Computer Algorithm Called 'Eva' May Ha…

A prescriptive computer program developed by the USC Marshall School of Business and Wharton School of Business of the University of Pennsylvania for Greece to identify asymptomatic, infected travelers...

FDA Clears First Major Imaging Device Ad…

Today, the U.S. Food and Drug Administration cleared the first new major technological improvement for Computed Tomography (CT) imaging in nearly a decade. "Computed tomography is an important medical imaging tool...

Using Internet in Retirement Boosts Cogn…

Using the internet during your retirement years can boost your cognitive function, a new study has found. Researchers from Lancaster University Management School, the Norwegian University Science and Technology and...

AI Tool Improves Accuracy of Breast Canc…

A computer program trained to see patterns among thousands of breast ultrasound images can aid physicians in accurately diagnosing breast cancer, a new study shows. When tested separately on 44,755 already...

Study Shows Trust is still at Heart of N…

A new study has shown that issues surrounding trust are still at the heart of people's reluctance to download and use the NHS App, particularly among Black, Asian and minority...

Time until Dementia Symptoms Appear can …

Researchers at Washington University School of Medicine in St. Louis have developed an approach to estimating when a person who is likely to develop Alzheimer’s disease, but has no cognitive...