CD-MEDICS

The overall concept of the CD-MEDICS IP is to develop a technology platform for point-of-care diagnostics, capable of simultaneous genomic and proteomic detection, with embedded communication abilities for direct interfacing with hospital information systems. This will be achieved by exploiting breakthroughs at the confluences of bio-, micro- and nano- technologies to create a low-cost non-invasive intelligent diagnosis system.

This platform will be developed in a modular format, which will allow each module to be developed and exploited individually. The modules will subsequently be integrated to facilitate the desired application. Advances in data communications, molecular biology and biosensor technology, with the integration of nanostructured functional components in macro and microsystems, will facilitate the realisation of a minimally invasive generic platform, which is capable of multi-parametric monitoring and will be interoperable with electronic medical records.

The advantages of integrated biosensor systems include their ease of use, their sensitivity, their inherent selectivity (preventing problems due to interfering substances), their versatility (allowing `in-field¿ use) and their cost effectiveness. Addressing the future health care requirement of an individualised theranostic approach, the specific application that will be demonstrated in this IP will be for the management, monitoring and diagnosis of coeliac disease, with the proposed technology contributing to significant advances in sensitivity and specificity of diagnosis. The technology platform developed, however, could be applied to a variety of clinical screening applications, such as cancer. The radical innovation proposed in this IP will result in a concrete prime deliverable of a technology platform of wide application and unquestionable socio-economic benefit, increasing European competitiveness whilst contributing considerably to the quality of life well being of the population.

For further information, please visit:
http://www.cdmedics.eu

Project co-ordinator:
Universitat Rovira i Virgili

Partners:

  • Institut für Mikrotechnik Mainz GmbH
  • Microfluidic ChipShop GmbH
  • Newcastle University
  • Intracom Telecom solutions
  • Clemens GmbH
  • Micro2Gen
  • Eurospital SpA
  • King's College London Business Ltd
  • INNO-TRAIN Diagnostik GmbH
  • TATAA Biocenter
  • MultiD Analyses AB
  • Finnish Red Cross Blood Service
  • Fondazione IRCCS Policlinico San Matteo
  • University Medical Centre Maribor
  • Valentia Technologies Limited
  • Association of European Coeliac Societies
  • Coeliac UK
  • Asociación de celíacos de Madrid
  • iXscient Ltd.
  • Newcastle upon Tyne Hospitals NHS Foundation Trust

Timetable: from 01/2008 – to 12/2011

Total cost: € 12.796.559

EC funding: € 9.500.000

Programme Acronym: FP7-ICT

Subprogramme Area: Personal health systems for monitoring and point-of-care diagnostics

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...