Open Call HORIZON-EIC-2022-PATHFINDERCHALLENGES-01-05: DNA-Based Digital Data Storage

European Commission Current technologies for digital data storage are hitting sustainability limits in terms of energy consumption and their use of rare and toxic materials. Moreover, data integrity when using those technologies is limited in time, which complicates archival data-storage. DNA or certain classes of synthetic DNA alternatives provide an alternative that promises information densities that are several orders of magnitude higher than classical memories, and stability for millennia rather than years. Moreover, DNA-based data storage can profit from the growing range of DNA research, tools and techniques from the life sciences, while potentially also adding to it (e.g., for in-vivo data collection).

Proof of concept for DNA data archiving in vitro (i.e. not in living cells) is now well established. Several studies have shown that such archiving can support selective and scalable access to data, as well as error-free storage and retrieval of information. However, technical challenges remain to make this process economically viable for a broad spectrum of uses (beyond so-called 'cold data') and data types. These relate to improving the cost, speed and efficiency of technologies for reading, and especially writing and editing, DNA or other information-storing bio-polymers.

Large corporates and governments are starting to show an interest and some smaller companies offer solutions for specific archival applications. Europe has academic and commercial potential in this area. The time is right to pull together a European R&I ecosystem on DNA-based digital data storage.

This EIC Pathfinder Challenge is to explore scalable and reliable high-throughput approaches for using DNA as a general data-storage medium. Solutions would thus need to address the read/write/edit operations of digital data in synthetic DNA, capturing the expected advantages of high density and stability/longevity of this form of data storage. The use of DNA sequences as chassis for non-standard forms of information coding, or of other polymeric substrates and related coding/decoding techniques are also in scope, provided they entail at least similar benefits than state-of-the-art DNA approaches. Proposed techniques should deliver qualitative advances in key parameters such as throughput, DNA-length (well above a few hundred mers), reliability (coupling efficiency), speed and cost. Beyond the usual storage applications, there is also scope for radically different scenarios for such a technology, for instance for data-processing, in-vivo sensing or fingerprinting.

Applications submitted to this Challenge, must pay particular attention to the relevant bio-safety and ethical issues.

Opening date: 16 June 2022

Deadline: 19 October 2022 17:00:00 Brussels time

Deadline Model: single-stage

Type of action: HORIZON-EIC HORIZON EIC Grants

For topic conditions, documents and submission service, please visit:
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-eic-2022-pathfinderchallenges-01-05

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...