Fighting Blood Diseases with AI

Every day, cytologists around the world use optical microscopes to analyze and classify samples of bone marrow cells thousands of times. This method to diagnose blood diseases was established more than 150 years ago, but it suffers from being very complex. Looking for rare but diagnostically important cells is both a laborious and time-consuming task. Artificial intelligence (AI) has the potential to boost this method - however it needs a large amount of high-quality data to train an AI algorithm.

Largest open-source database for bone marrow cell images

The Helmholtz Munich researchers developed the largest open access database on microscopic images of bone marrow cells to date. The database consists of more than 170,000 single-cell images from over 900 patients with various blood diseases. It is the result of a collaboration from Helmholtz Munich with the LMU University Hospital Munich, the MLL Munich Leukemia Lab (one of the largest diagnostic providers in this field worldwide) and Fraunhofer Institute for Integrated Circuits.

Using the database to boost artificial intelligence

"On top of our database, we have developed a neural network that outperforms previous machine learning algorithms for cell classification in terms of accuracy, but also in terms of generalizability," says Christian Matek, lead author of the new study. The deep neural network is a machine learning concept specifically designed to process images. "The analysis of bone marrow cells has not yet been performed with such advanced neural networks," Christian Matek explains, "which is also due to the fact that high-quality, public datasets have not been available until now."

The researchers aim to further expand their bone marrow cell database to capture a broader range of findings and to prospectively validate their model. "The database and the model are freely available for research and training purposes - to educate professionals or as a reference for further AI-based approaches e.g. in blood cancer diagnostics," says study leader Carsten Marr.

Matek C, Krappe S, Münzenmayer C, Haferlach T, Marr C.
Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set.
Blood. 2021 Nov 18;138(20):1917-1927. doi: 10.1182/blood.2020010568

Most Popular Now

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...

ChatGPT Extracts Data for Ischaemic Stro…

In an ischaemic stroke, an artery in the brain is blocked by blood clots and the brain cells can no longer be supplied with blood as a result. Doctors must...

Experts Propose Specific and Suited Guid…

Current Artificial Intelligence (AI) models for cancer treatment are trained and approved only for specific intended purposes. GMAI models, in contrast, can handle a wide range of medical data including...

Herefordshire and Worcestershire Health …

Herefordshire and Worcestershire Health and Care NHS Trust has successfully implemented Alcidion's Miya Precision platform to streamline bed management workflow across seven community hospitals in Worcestershire. The trust delivers community...

A Record Year with More than 800 Exhibit…

9 - 11 April 2024, Berlin, Germany. DMEA 2024 kicks off today, focusing on the key issues in the digital transformation of the healthcare system. From now until 11 April over...

New Horizon Europe Funding Boosts Europe…

The European Commission has announced the launch of new Horizon Europe calls, with a substantial funding pool of over €112 million. These calls are aimed primarily at pioneering projects in...