Experts Propose Specific and Suited Guidelines for the Use and Regulation of AI

Current Artificial Intelligence (AI) models for cancer treatment are trained and approved only for specific intended purposes. GMAI models, in contrast, can handle a wide range of medical data including different types of images and text. For example, for a patient with colorectal cancer, a single GMAI model could interpret endoscopy videos, pathology slides and electronic health record (EHR) data. Hence, such multi-purpose or generalist models represent a paradigm shift away from narrow AI models.

Regulatory bodies face a dilemma in adapting to these new models because current regulations are designed for applications with a defined and fixed purpose, specific set of clinical indications and target population. Adaptation or extension after approval is not possible without going through quality management and regulatory, administrative processes again. GMAI models, with their adaptability and predictive potential even without specific training examples - so called zero shot reasoning - therefore pose challenges for validation and reliability assessment. Currently, they are excluded by all international frameworks.

The authors point out that existing regulatory frameworks are not well suited to handle GMAI models due to their characteristics. "If these regulations remain unchanged, a possible solution could be hybrid approaches. GMAIs could be approved as medical devices and then the range of allowed clinical prompts could be restricted," says Prof. Stephen Gilbert, Professor of Medical Device Regulatory Science at TU Dresden. "But this approach is to force models with potential to intelligential address new questions and multimodal data onto narrow tracks through rules written when these technologies were not anticipated. Specific decisions should be made on how to proceed with these technologies and not to exclude their ability to address questions they were not specifically designed for. New technologies sometimes call for new regulatory paradigms," says Prof. Gilbert.

The researchers argue that it will be impossible to prevent patients and medical experts from using generic models or unapproved medical decision support systems. Therefore, it would be crucial to maintain the central role of physicians and enable them as empowered information interpreters.

In conclusion, the researchers propose a flexible regulatory approach that accommodates the unique characteristics of GMAI models while ensuring patient safety and supporting physician decision-making. They point out that a rigid regulatory framework could hinder progress in AI-driven healthcare, and call for a nuanced approach that balances innovation with patient welfare.

Gilbert S, Kather JN.
Guardrails for the use of generalist AI in cancer care.
Nat Rev Cancer. 2024 Apr 16. doi: 10.1038/s41568-024-00685-8

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...