Experts Propose Specific and Suited Guidelines for the Use and Regulation of AI

Current Artificial Intelligence (AI) models for cancer treatment are trained and approved only for specific intended purposes. GMAI models, in contrast, can handle a wide range of medical data including different types of images and text. For example, for a patient with colorectal cancer, a single GMAI model could interpret endoscopy videos, pathology slides and electronic health record (EHR) data. Hence, such multi-purpose or generalist models represent a paradigm shift away from narrow AI models.

Regulatory bodies face a dilemma in adapting to these new models because current regulations are designed for applications with a defined and fixed purpose, specific set of clinical indications and target population. Adaptation or extension after approval is not possible without going through quality management and regulatory, administrative processes again. GMAI models, with their adaptability and predictive potential even without specific training examples - so called zero shot reasoning - therefore pose challenges for validation and reliability assessment. Currently, they are excluded by all international frameworks.

The authors point out that existing regulatory frameworks are not well suited to handle GMAI models due to their characteristics. "If these regulations remain unchanged, a possible solution could be hybrid approaches. GMAIs could be approved as medical devices and then the range of allowed clinical prompts could be restricted," says Prof. Stephen Gilbert, Professor of Medical Device Regulatory Science at TU Dresden. "But this approach is to force models with potential to intelligential address new questions and multimodal data onto narrow tracks through rules written when these technologies were not anticipated. Specific decisions should be made on how to proceed with these technologies and not to exclude their ability to address questions they were not specifically designed for. New technologies sometimes call for new regulatory paradigms," says Prof. Gilbert.

The researchers argue that it will be impossible to prevent patients and medical experts from using generic models or unapproved medical decision support systems. Therefore, it would be crucial to maintain the central role of physicians and enable them as empowered information interpreters.

In conclusion, the researchers propose a flexible regulatory approach that accommodates the unique characteristics of GMAI models while ensuring patient safety and supporting physician decision-making. They point out that a rigid regulatory framework could hinder progress in AI-driven healthcare, and call for a nuanced approach that balances innovation with patient welfare.

Gilbert S, Kather JN.
Guardrails for the use of generalist AI in cancer care.
Nat Rev Cancer. 2024 Apr 16. doi: 10.1038/s41568-024-00685-8

Most Popular Now

AI Tool Helps Predict Relapse of Pediatr…

Artificial intelligence (AI) shows tremendous promise for analyzing vast medical imaging datasets and identifying patterns that may be missed by human observers. AI-assisted interpretation of brain scans may help improve...

NHS, Councils, and Housing could Share N…

A new technology partnership formally announced, could help NHS, local government, and housing organisations collaborate to create an unprecedented understanding of the risks and needs of people in their care...

Children's Health Ireland to Transf…

Healthcare teams responsible for paediatric care in Ireland are to save significant time in accessing important diagnostic imaging and reports, with the help of a new agreement with medical imaging...

AI-Powered Analysis of Stent Healing

Each year, more than three million people worldwide are treated with stents to open blocked blood vessels caused by heart disease. However, monitoring the healing process after implantation remains a...

Right Patient, Right Dose, Right Time

While artificial intelligence (AI) has shown promising potential, much of its use has remained theoretical or retrospective. Turning its potential into real-world healthcare outcomes, researchers at the Yong Loo Lin...

AXREM and BHTA Name Highland as 'Fu…

Hosted by trade associations AXREM and the British Healthcare Trades Association (BHTA), 'The Future of MedTech - Innovating for Tomorrow', will allow delegates to engage with speakers from the government...

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

AI could Help Improve Early Detection of…

A new study led by investigators at the UCLA Health Jonsson Comprehensive Cancer Center suggests that artificial intelligence (AI) could help detect interval breast cancers - those that develop between...

Building Trust in Artificial Intelligenc…

A new review, published in the peer-reviewed journal AI in Precision Oncology, explores the multifaceted reasons behind the skepticism surrounding artificial intelligence (AI) technologies in healthcare and advocates for approaches...

Siemens Healthineers infection Control S…

Klinikum Region Hannover (KRH) has commissioned Siemens Healthineers to install infection control system (ICS) at the Klinikum Siloah hospital. The ICS aims to effectively tackle nosocomial infections and increase patient...

AI Tool Uses Face Photos to Estimate Bio…

Eyes may be the window to the soul, but a person's biological age could be reflected in their facial characteristics. Investigators from Mass General Brigham developed a deep learning algorithm...