ChatGPT fails at heart risk assessment

Despite ChatGPT's reported ability to pass medical exams, new research indicates it would be unwise to rely on it for some health assessments, such as whether a patient with chest pain needs to be hospitalized.

In a study involving thousands of simulated cases of patients with chest pain, ChatGPT provided inconsistent conclusions, returning different heart risk assessment levels for the exact same patient data. The generative AI system also failed to match the traditional methods physicians use to judge a patient’s cardiac risk. The findings were published in the journal PLOS ONE.

"ChatGPT was not acting in a consistent manner," said lead author Dr. Thomas Heston, a researcher with Washington State University's Elson S. Floyd College of Medicine. "Given the exact same data, ChatGPT would give a score of low risk, then next time an intermediate risk, and occasionally, it would go as far as giving a high risk."

The authors believe the problem is likely due to the level of randomness built into the current version of the software, ChatGPT4, which helps it vary its responses to simulate natural language. This same randomness, however, does not work well for healthcare uses that require a single, consistent answer, Heston said.

"We found there was a lot of variation, and that variation in approach can be dangerous," he said. "It can be a useful tool, but I think the technology is going a lot faster than our understanding of it, so it's critically important that we do a lot of research, especially in these high-stakes clinical situations."

Chest pains are common complaints in emergency rooms, requiring doctors to rapidly assess the urgency of a patient's condition. Some very serious cases are easy to identify by their symptoms, but lower risk ones can be trickier, Heston said, especially when determining whether someone should be hospitalized for observation or sent home and receive outpatient care.

Currently medical professionals often use one of two measures that go by the acronyms TIMI and HEART to assess heart risk. Heston likened these scales to calculators with each using a handful of variables including symptoms, health history and age. In contrast, an AI neural network like ChatGPT can assess billions of variables quickly, meaning it could potentially analyze a complex situation faster and more thoroughly.

For this study, Heston and colleague Dr. Lawrence Lewis of Washington University in St. Louis first generated three datasets of 10,000 randomized, simulated cases each. One dataset had the seven variables of the TIMI scale, the second set included the five HEART scale variables and a third had 44 randomized health variables. On the first two datasets, ChatGPT gave a different risk assessment 45% to 48% of the time on individual cases than a fixed TIMI or HEART score. For the last data set, the researchers ran the cases four times and found ChatGPT often did not agree with itself, returning different assessment levels for the same cases 44% of the time.

Despite the negative findings of this study, Heston sees great potential for generative AI in health care - with further development. For instance, assuming privacy standards could be met, entire medical records could be loaded into the program, and an in an emergency setting, a doctor could ask ChatGPT to give the most pertinent facts about a patient quickly. Also, for difficult, complex cases, doctors could ask the program to generate several possible diagnoses.

"ChatGPT could be excellent at creating a differential diagnosis and that's probably one of its greatest strengths," said Heston. "If you don’t quite know what's going on with a patient, you could ask it to give the top five diagnoses and the reasoning behind each one. So it could be good at helping you think through a problem, but it’s not good at giving the answer."

Heston TF, Lewis LM.
ChatGPT provides inconsistent risk-stratification of patients with atraumatic chest pain.
PLoS One. 2024 Apr 16;19(4):e0301854. doi: 10.1371/journal.pone.0301854

Most Popular Now

European Artificial Intelligence Act Com…

The European Artificial Intelligence Act (AI Act), the world's first comprehensive regulation on artificial intelligence, enters into force. The AI Act is designed to ensure that AI developed and used...

Patient Safety must be Central to the De…

An EPR system brings together different patient information in one place, making it easier to access for healthcare professionals. This information can include patients' own notes, test results, observations by...

Generative AI can Not yet Reliably Read …

It may someday be possible to use Large Language Models (LLM) to automatically read clinical notes in medical records and reliably and efficiently extract relevant information to support patient care...

ChatGPT Shows Promise in Answering Patie…

The groundbreaking ChatGPT chatbot shows potential as a time-saving tool for responding to patient questions sent to the urologist's office, suggests a study in the September issue of Urology Practice®...

Survey: Most Americans Comfortable with …

Artificial intelligence (AI) is all around us - from smart home devices to entertainment and social media algorithms. But is AI okay in healthcare? A new national survey commissioned by...

AI can Help Rule out Abnormal Pathology …

A commercial artificial intelligence (AI) tool used off-label was effective at excluding pathology and had equal or lower rates of critical misses on chest X-ray than radiologists, according to a...

What Does the EU's Recent AI Act Me…

The European Union's law on artificial intelligence came into force on 1 August. The new AI Act essentially regulates what artificial intelligence can and cannot do in the EU. A...

AI Spots Cancer and Viral Infections at …

Researchers at the Centre for Genomic Regulation (CRG), the University of the Basque Country (UPV/EHU), Donostia International Physics Center (DIPC) and the Fundación Biofisica Bizkaia (FBB, located in Biofisika Institute)...

Video Gaming Improves Mental Well-Being

A pioneering study titled "Causal effect of video gaming on mental well-being in Japan 2020-2022," published in Nature Human Behaviour, has conducted the most comprehensive investigation to date on the...

New Diabetes Research Links Blood Glucos…

As part of its ongoing exploration of vocal biomarkers and the role they can play in enhancing health outcomes, Klick Labs published a new study in Scientific Reports - confirming...

Machine learning helps identify rheumato…

A machine-learning tool created by Weill Cornell Medicine and Hospital for Special Surgery (HSS) investigators can help distinguish subtypes of rheumatoid arthritis (RA), which may help scientists find ways to...

New AI Software could Make Diagnosing De…

Although Alzheimer's is the most common cause of dementia - a catchall term for cognitive deficits that impact daily living, like the loss of memory or language - it's not...