GPT-4, Google Gemini Fall Short in Breast Imaging Classification

Use of publicly available large language models (LLMs) resulted in changes in breast imaging reports classification that could have a negative effect on patient management, according to a new international study published today in the journal Radiology, a journal of the Radiological Society of North America (RSNA). The study findings underscore the need to regulate these LLMs in scenarios that require high-level medical reasoning, researchers said.

LLMs are a type of artificial intelligence (AI) widely used today for a variety of purposes. In radiology, LLMs have already been tested in a wide variety of clinical tasks, from processing radiology request forms to providing imaging recommendations and diagnosis support.

Publicly available generic LLMs like ChatGPT (GPT 3.5 and GPT-4) and Google Gemini (formerly Bard) have shown promising results in some tasks. Importantly, however, they are less successful at more complex tasks requiring a higher level of reasoning and deeper clinical knowledge, such as providing imaging recommendations. Users seeking medical advice may not always understand the limitations of these untrained programs.

"Evaluating the abilities of generic LLMs remains important as these tools are the most readily available and may unjustifiably be used by both patients and non-radiologist physicians seeking a second opinion," said study co-lead author Andrea Cozzi, M.D., Ph.D., radiology resident and post-doctoral research fellow at the Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, in Lugano, Switzerland.

Dr. Cozzi and colleagues set out to test the generic LLMs on a task that pertains to daily clinical routine but where the depth of medical reasoning is high and where the use of languages other than English would further stress LLMs capabilities. They focused on the agreement between human readers and LLMs for the assignment of Breast Imaging Reporting and Data System (BI-RADS) categories, a widely used system to describe and classify breast lesions.

The Swiss researchers partnered with an American team from Memorial Sloan Kettering Cancer Center in New York City and a Dutch team at the Netherlands Cancer Institute in Amsterdam.

The study included BI-RADS classifications of 2,400 breast imaging reports written in English, Italian and Dutch. Three LLMs - GPT-3.5, GPT-4 and Google Bard (now renamed Google Gemini) - assigned BI-RADS categories using only the findings described by the original radiologists. The researchers then compared the performance of the LLMs with that of board-certified breast radiologists.

The agreement for BI-RADS category assignments between human readers was almost perfect. However, the agreement between humans and the LLMs was only moderate. Most importantly, the researchers also observed a high percentage of discordant category assignments that would result in negative changes in patient management. This raises several concerns about the potential consequences of placing too much reliance on these widely available LLMs.

According to Dr. Cozzi, the results highlight the need for regulation of LLMs when there is a highly likely possibility that users may ask them health-care-related questions of varying depth and complexity.

"The results of this study add to the growing body of evidence that reminds us of the need to carefully understand and highlight the pros and cons of LLM use in health care," he said. "These programs can be a wonderful tool for many tasks but should be used wisely. Patients need to be aware of the intrinsic shortcomings of these tools, and that they may receive incomplete or even utterly wrong replies to complex questions."

Cozzi A, Pinker K, Hidber A, Zhang T, Bonomo L, Lo Gullo R, Christianson B, Curti M, Rizzo S, Del Grande F, Mann RM, Schiaffino S.
BI-RADS Category Assignments by GPT-3.5, GPT-4, and Google Bard: A Multilanguage Study.
Radiology. 2024 Apr;311(1):e232133. doi: 10.1148/radiol.232133

Most Popular Now

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...