Researcher Engineers a Cutting-Edge Solution for Radiologists and other Medical Staff

Some 2 billion X-rays are performed around the world every year. But the average radiology clinic is understaffed. Radiologists are burdened with a growing workload, allowing little time to comprehensively evaluate images - leading to misdiagnoses and more serious consequences.

Now a Tel Aviv University lab is engineering practical solutions to meet the demands of radiologists. Prof. Hayit Greenspan's Medical Image Processing Lab in the Department of Biomedical Engineering in the TAU Faculty of Engineering has developed a wide variety of tools to facilitate computer-assisted diagnosis of X-rays, CTs and MRIs, freeing radiologists to attend to complex cases that require their full attention and skills.

"There is a shortage of radiologists, and their workload continues to grow. This means that some X-rays are never read or are only read following a long, life-endangering delay," said Prof. Greenspan. "Our goal is to use computer-assisted 'Deep Learning' technologies to differentiate between healthy and non-healthy patients, and to categorize all pathologies present in a single image through an efficient and robust framework that can be adapted to a real clinical setting."

"Deep learning" for accurate diagnosis
Prof. Greenspan discussed her lab's plan to implement "Deep Learning," a new area of Machine Learning research that harnesses artificial intelligence for various scientific fields, at the Israeli Symposium on Computational Radiology held at TAU last December. Her goal is to use Deep Learning to develop diagnostic tools for the automated detection and labelling of pathologies in radiographic images.

Prof. Greenspan's lab is one of only a few labs in the world dedicated to the application of Deep Learning in medicine. She and her team have already developed the technology to support automated chest X-ray pathology identification using Deep Learning, liver lesion detection, MRI lesion analysis and other tasks.

"We have developed tools to support decision-making in radiology with computer vision and machine learning algorithms. This will help radiologists make more accurate, more quantitative and more objective decisions," said Prof. Greenspan. "This is especially crucial when it comes to initial screenings. Such systems can improve accuracy and efficiency in both basic and more advanced radiology departments around the world."

Prof. Greenspan is also exploring the use of "transfer learning" in her research on the medical applications of Deep Learning. "Crowdsourcing was essential for the application of Deep Learning on general image searches such as Google search," said Prof. Greenspan. "But when it comes to medical imaging, there are privacy issues and there's very little comprehensive data available at this point.

"In 'transfer learning,' we use networks originally trained on regular images to categorize medical images. The features and parameters that represent millions of general images provide a good signature for the analysis of medical images as well."

Prof. Greenspan's work is supported by the INTEL Collaborative Research Institute for Computational Intelligence (ICRI-CI) and the Israeli Finance Ministry, in collaboration with Sheba Medical Center. She is also head co-editor of a special issue on "Deep Learning in Medical Imaging," which will be published in the journal IEEE Transactions on Medical Imaging in May.

Tel Aviv University (TAU) is inherently linked to the cultural, scientific and entrepreneurial mecca it represents. It is one of the world's most dynamic research centers and Israel's most distinguished learning environment. Its unique-in-Israel multidisciplinary environment is highly coveted by young researchers and scholars returning to Israel from post-docs and junior faculty positions in the US.

American Friends of Tel Aviv University (AFTAU) enthusiastically and industriously pursues the advancement of TAU in the US, raising money, awareness and influence through international alliances that are vital to the future of this already impressive institution.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...