Researcher Engineers a Cutting-Edge Solution for Radiologists and other Medical Staff

Some 2 billion X-rays are performed around the world every year. But the average radiology clinic is understaffed. Radiologists are burdened with a growing workload, allowing little time to comprehensively evaluate images - leading to misdiagnoses and more serious consequences.

Now a Tel Aviv University lab is engineering practical solutions to meet the demands of radiologists. Prof. Hayit Greenspan's Medical Image Processing Lab in the Department of Biomedical Engineering in the TAU Faculty of Engineering has developed a wide variety of tools to facilitate computer-assisted diagnosis of X-rays, CTs and MRIs, freeing radiologists to attend to complex cases that require their full attention and skills.

"There is a shortage of radiologists, and their workload continues to grow. This means that some X-rays are never read or are only read following a long, life-endangering delay," said Prof. Greenspan. "Our goal is to use computer-assisted 'Deep Learning' technologies to differentiate between healthy and non-healthy patients, and to categorize all pathologies present in a single image through an efficient and robust framework that can be adapted to a real clinical setting."

"Deep learning" for accurate diagnosis
Prof. Greenspan discussed her lab's plan to implement "Deep Learning," a new area of Machine Learning research that harnesses artificial intelligence for various scientific fields, at the Israeli Symposium on Computational Radiology held at TAU last December. Her goal is to use Deep Learning to develop diagnostic tools for the automated detection and labelling of pathologies in radiographic images.

Prof. Greenspan's lab is one of only a few labs in the world dedicated to the application of Deep Learning in medicine. She and her team have already developed the technology to support automated chest X-ray pathology identification using Deep Learning, liver lesion detection, MRI lesion analysis and other tasks.

"We have developed tools to support decision-making in radiology with computer vision and machine learning algorithms. This will help radiologists make more accurate, more quantitative and more objective decisions," said Prof. Greenspan. "This is especially crucial when it comes to initial screenings. Such systems can improve accuracy and efficiency in both basic and more advanced radiology departments around the world."

Prof. Greenspan is also exploring the use of "transfer learning" in her research on the medical applications of Deep Learning. "Crowdsourcing was essential for the application of Deep Learning on general image searches such as Google search," said Prof. Greenspan. "But when it comes to medical imaging, there are privacy issues and there's very little comprehensive data available at this point.

"In 'transfer learning,' we use networks originally trained on regular images to categorize medical images. The features and parameters that represent millions of general images provide a good signature for the analysis of medical images as well."

Prof. Greenspan's work is supported by the INTEL Collaborative Research Institute for Computational Intelligence (ICRI-CI) and the Israeli Finance Ministry, in collaboration with Sheba Medical Center. She is also head co-editor of a special issue on "Deep Learning in Medical Imaging," which will be published in the journal IEEE Transactions on Medical Imaging in May.

Tel Aviv University (TAU) is inherently linked to the cultural, scientific and entrepreneurial mecca it represents. It is one of the world's most dynamic research centers and Israel's most distinguished learning environment. Its unique-in-Israel multidisciplinary environment is highly coveted by young researchers and scholars returning to Israel from post-docs and junior faculty positions in the US.

American Friends of Tel Aviv University (AFTAU) enthusiastically and industriously pursues the advancement of TAU in the US, raising money, awareness and influence through international alliances that are vital to the future of this already impressive institution.

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...

New Computer Models Open Door to Far Mor…

With antibiotic resistance a growing problem, University of Virginia School of Medicine researchers have developed cutting-edge computer models that could give the disease-fighting drugs a laser-like precision to target only...

New Biomarkers to Detect Colorectal Canc…

Machine learning and artificial intelligence (AI) techniques and analysis of large datasets have helped University of Birmingham researchers to discover proteins that have strong predictive potential for colorectal cancer. In a...

Sam Neville Joins the Highland Marketing…

Leading chief nursing information officer Sam Neville is joining the Highland Marketing advisory board. Sam brings a passion for nursing and safety to the board, which debates the big issues...

AI Model Identifies Potential Risk Genes…

Researchers from the Cleveland Clinic Genome Center have successfully applied advanced artificial intelligence (AI) genetics models to Parkinson's disease. Researchers identified genetic factors in progression and FDA-approved drugs that can...

AI Tool that may Assist Underserved Hosp…

As the fields of healthcare and technology increasingly evolve and intersect, researchers are collaborating on the best ways to use emerging technologies such as artificial intelligence (AI) to care for...