Researcher Engineers a Cutting-Edge Solution for Radiologists and other Medical Staff

Some 2 billion X-rays are performed around the world every year. But the average radiology clinic is understaffed. Radiologists are burdened with a growing workload, allowing little time to comprehensively evaluate images - leading to misdiagnoses and more serious consequences.

Now a Tel Aviv University lab is engineering practical solutions to meet the demands of radiologists. Prof. Hayit Greenspan's Medical Image Processing Lab in the Department of Biomedical Engineering in the TAU Faculty of Engineering has developed a wide variety of tools to facilitate computer-assisted diagnosis of X-rays, CTs and MRIs, freeing radiologists to attend to complex cases that require their full attention and skills.

"There is a shortage of radiologists, and their workload continues to grow. This means that some X-rays are never read or are only read following a long, life-endangering delay," said Prof. Greenspan. "Our goal is to use computer-assisted 'Deep Learning' technologies to differentiate between healthy and non-healthy patients, and to categorize all pathologies present in a single image through an efficient and robust framework that can be adapted to a real clinical setting."

"Deep learning" for accurate diagnosis
Prof. Greenspan discussed her lab's plan to implement "Deep Learning," a new area of Machine Learning research that harnesses artificial intelligence for various scientific fields, at the Israeli Symposium on Computational Radiology held at TAU last December. Her goal is to use Deep Learning to develop diagnostic tools for the automated detection and labelling of pathologies in radiographic images.

Prof. Greenspan's lab is one of only a few labs in the world dedicated to the application of Deep Learning in medicine. She and her team have already developed the technology to support automated chest X-ray pathology identification using Deep Learning, liver lesion detection, MRI lesion analysis and other tasks.

"We have developed tools to support decision-making in radiology with computer vision and machine learning algorithms. This will help radiologists make more accurate, more quantitative and more objective decisions," said Prof. Greenspan. "This is especially crucial when it comes to initial screenings. Such systems can improve accuracy and efficiency in both basic and more advanced radiology departments around the world."

Prof. Greenspan is also exploring the use of "transfer learning" in her research on the medical applications of Deep Learning. "Crowdsourcing was essential for the application of Deep Learning on general image searches such as Google search," said Prof. Greenspan. "But when it comes to medical imaging, there are privacy issues and there's very little comprehensive data available at this point.

"In 'transfer learning,' we use networks originally trained on regular images to categorize medical images. The features and parameters that represent millions of general images provide a good signature for the analysis of medical images as well."

Prof. Greenspan's work is supported by the INTEL Collaborative Research Institute for Computational Intelligence (ICRI-CI) and the Israeli Finance Ministry, in collaboration with Sheba Medical Center. She is also head co-editor of a special issue on "Deep Learning in Medical Imaging," which will be published in the journal IEEE Transactions on Medical Imaging in May.

Tel Aviv University (TAU) is inherently linked to the cultural, scientific and entrepreneurial mecca it represents. It is one of the world's most dynamic research centers and Israel's most distinguished learning environment. Its unique-in-Israel multidisciplinary environment is highly coveted by young researchers and scholars returning to Israel from post-docs and junior faculty positions in the US.

American Friends of Tel Aviv University (AFTAU) enthusiastically and industriously pursues the advancement of TAU in the US, raising money, awareness and influence through international alliances that are vital to the future of this already impressive institution.

Most Popular Now

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...

AI Body Composition Measurements can Pre…

Adiposity - or the accumulation of excess fat in the body - is a known driver of cardiometabolic diseases such as heart disease, stroke, type 2 diabetes, and kidney disease...