Diagnoses and Treatment Recommendations Given by AI were More Accurate than those of Physicians

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations made by artificial intelligence (AI) and physicians at Cedars-Sinai Connect, a virtual urgent care clinic in Los Angeles, operated in collaboration with Israeli startup K Health. The paper was published in Annals of Internal Medicine and presented at the annual conference of the American College of Physicians (ACP). This work was supported with funding by K Health.

Prof. Zeltzer explains: "Cedars-Sinai operates a virtual urgent care clinic offering telemedical consultations with physicians who specialize in family and emergency care. Recently, an AI system was integrated into the clinic - an algorithm based on machine learning that conducts initial intake through a dedicated chat, incorporates data from the patient’s medical record, and provides the attending physician with detailed diagnostic and treatment suggestions at the start of the visit -including prescriptions, tests, and referrals. After interacting with the algorithm, patients proceed to a video visit with a physician who ultimately determines the diagnosis and treatment. To ensure reliable AI recommendations, the algorithm - trained on medical records from millions of cases - only offers suggestions when its confidence level is high, giving no recommendation in about one out of five cases. In this study, we compared the quality of the AI system's recommendations with the physicians' actual decisions in the clinic."

The researchers examined a sample of 461 online clinic visits over one month during the summer of 2024. The study focused on adult patients with relatively common symptoms - respiratory, urinary, eye, vaginal and dental. In all visits reviewed, patients were initially assessed by the algorithm, which provided recommendations, and then treated by a physician in a video consultation. Afterwards, all recommendations - from both the algorithm and the physicians - were evaluated by a panel of four doctors with at least ten years of clinical experience, who rated each recommendation on a four-point scale: optimal, reasonable, inadequate, or potentially harmful. The evaluators assessed the recommendations based on the patients' medical histories, the information collected during the visit, and transcripts of the video consultations.

The compiled ratings led to interesting conclusions: AI recommendations were rated as optimal in 77% of cases, compared to only 67% of the physicians' decisions; at the other end of the scale, AI recommendations were rated as potentially harmful in a smaller portion of cases than physicians' decisions (2.8% of AI recommendations versus 4.6% of physicians' decisions). In 68% of the cases, the AI and the physician received the same score; in 21% of cases, the algorithm scored higher than the physician; and in 11% of cases, the physician's decision was considered better.

The explanations provided by the evaluators for the differences in ratings highlight several advantages of the AI system over human physicians: First, the AI more strictly adheres to medical association guidelines - for example, not prescribing antibiotics for a viral infection; second, AI more comprehensively identifies relevant information in the medical record - such as recurrent cases of a similar infection that may influence the appropriate course of treatment; and third, AI more precisely identifies symptoms that could indicate a more serious condition, such as eye pain reported by a contact lens wearer, which could signal an infection. Physicians, on the other hand, are more flexible than the algorithm and have an advantage in assessing the patient's real condition. For example, if a COVID-19 patient reports shortness of breath, a doctor may recognize it as a relatively mild respiratory congestion, whereas the AI, based solely on the patient's answers, might refer them unnecessarily to the emergency room.

Prof. Zeltzer concludes: "In this study, we found that AI, based on a targeted intake process, can provide diagnostic and treatment recommendations that are, in many cases, more accurate than those made by physicians. One limitation of the study is that we do not know which of the physicians reviewed the AI's recommendations in the available chart, or to what extent they relied on these recommendations. Thus, the study only measured the accuracy of the algorithm's recommendations and not their impact on the physicians. The uniqueness of the study lies in the fact that it tested the algorithm in a real-world setting with actual cases, while most studies focus on examples from certification exams or textbooks. The relatively common conditions included in our study represent about two-thirds of the clinic's case volume, and thus the findings can be meaningful for assessing AI's readiness to serve as a decision-support tool in medical practice. We can envision a near future in which algorithms assist in an increasing portion of medical decisions, bringing certain data to the doctor's attention, and facilitating faster decisions with fewer human errors. Of course, many questions still remain about the best way to implement AI in the diagnostic and treatment process, as well as the optimal integration between human expertise and artificial intelligence in medicine."

Zeltzer D, Kugler Z, Hayat L, Brufman T, Ilan Ber R, Leibovich K, Beer T, Frank I, Shaul R, Goldzweig C, Pevnick J.
Comparison of Initial Artificial Intelligence (AI) and Final Physician Recommendations in AI-Assisted Virtual Urgent Care Visits.
Ann Intern Med. 2025 Apr;178(4):498-506. doi: 10.7326/ANNALS-24-03283

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...

NHS National Rehabilitation Centre to De…

The new NHS National Rehabilitation Centre will deploy technology to help patients to maintain their independence as they recover from life-changing injuries and illnesses and regain quality of life. Airwave Healthcare...

AI Finds Hundreds of Potential Antibioti…

Snake, scorpion, and spider venom are most frequently associated with poisonous bites, but with the help of artificial intelligence, they might be able to help fight antibiotic resistance, which contributes...

AI Tool Accurately Detects Tumor Locatio…

An AI model trained to detect abnormalities on breast MR images accurately depicted tumor locations and outperformed benchmark models when tested in three different groups, according to a study published...

AI can Accelerate Search for More Effect…

Scientists have used an AI model to reassess the results of a completed clinical trial for an Alzheimer’s disease drug. They found the drug slowed cognitive decline by 46% in...