AI Predicts Cancer Patient Survival by Reading Doctor's Notes

A team of researchers from the University of British Columbia and BC Cancer have developed an artificial intelligence (AI) model that predicts cancer patient survival more accurately and with more readily available data than previous tools.

The model uses natural language processing (NLP) - a branch of AI that understands complex human language - to analyze oncologist notes following a patient’s initial consultation visit - the first step in the cancer journey after diagnosis. By identifying characteristics unique to each patient, the model was shown to predict six-month, 36-month and 60-month survival with greater than 80 per cent accuracy. The findings were published today in JAMA Network Open.

"Predicting cancer survival is an important factor that can be used to improve cancer care," said lead author Dr. John-Jose Nunez, a psychiatrist and clinical research fellow with the UBC Mood Disorders Centre and BC Cancer. "It might suggest health providers make an earlier referral to support services or offer a more aggressive treatment option upfront. Our hope is that a tool like this could be used to personalize and optimize the care a patient receives right away, giving them the best outcome possible."

Traditionally, cancer survival rates have been calculated retrospectively and categorized by only a few generic factors such as cancer site and tissue type. Despite familiarity with these rates, it can be challenging for oncologists to accurately predict an individual patient’s survival due to the many complex factors that influence patient outcomes.

The model developed by Dr. Nunez and his collaborators, which includes researchers from BC Cancer and UBC’s departments of computer science and psychiatry, is able to pick up on unique clues within a patient’s initial consultation document to provide a more nuanced assessment. It is also applicable to all cancers, whereas previous models have been limited to certain cancer types.

"The AI essentially reads the consultation document similar to how a human would read it," said Dr. Nunez. "These documents have many details like the age of the patient, the type of cancer, underlying health conditions, past substance use, and family histories. The AI brings all of this together to paint a more complete picture of patient outcomes."

The researchers trained and tested the model using data from 47,625 patients across all six BC Cancer sites located across British Columbia. To protect privacy, all patient data remained stored securely at BC Cancer and was presented anonymously. Unlike chart reviews by human research assistants, the new AI approach has the added benefit of maintaining complete confidentiality of patient records.

"Because the model is trained on B.C. data, that makes it a potentially powerful tool for predicting cancer survival here in the province," said Dr. Nunez.

In the future, the technology could be applied in cancer clinics across Canada and around the world.

"The great thing about neural NLP models is that they are highly scalable, portable and don’t require structured data sets," said Dr. Nunez. "We can quickly train these models using local data to improve performance in a new region. I would suspect that these models provide a good foundation anywhere in the world where patients are able to see an oncologist."

Dr. Nunez is a recipient of the 2022/23 UBC Institute of Mental Health Marshall Fellowship, and is also supported by funding from the BC Cancer Foundation. In another stream of work, Dr. Nunez is examining how to facilitate the best-possible psychiatric and counselling care for cancer patients using advanced AI techniques. He envisions a future where AI is integrated into many aspects of the health system to improve patient care.

"I see AI acting almost like a virtual assistant for physicians," said Dr. Nunez. "As medicine gets more and more advanced, having AI to help sort through and make sense of all the data will help inform physician decisions. Ultimately, this will help improve quality of life and outcomes for patients."

Nunez JJ, Leung B, Ho C, Bates AT, Ng RT.
Predicting the Survival of Patients With Cancer From Their Initial Oncology Consultation Document Using Natural Language Processing.
JAMA Netw Open. 2023 Feb 1;6(2):e230813. doi: 10.1001/jamanetworkopen.2023.0813

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...