AI Tool Developed to Help Make Real-Time Diagnoses During Surgery

When a patient undergoes a surgical operation to remove a tumor or treat a disease, the course of surgery is often not predetermined. To decide how much tissue needs to be removed, surgeons must know more about the condition they are treating, including a tumor's margins, its stage and whether a lesion is malignant or benign - determinations that often hinge upon collecting, analyzing, and diagnosing a disease while the patient is on the operating table. When surgeons send samples to a pathologist for examination, both speed and accuracy are of the essence. The current gold-standard approach for examining tissues often takes too long and a faster approach, which involves freezing tissue, can introduce artifacts that can complicate diagnostics. A new study by investigators from the Mahmood Lab at the Brigham and Women's Hospital, a founding member of the Mass General Brigham healthcare system, and collaborators from Bogazici University developed a better way; the method leverages artificial intelligence to translate between frozen sections and the gold-standard approach, improving the quality of images to increase the accuracy of rapid diagnostics. Findings are published in Nature Biomedical Engineering.

"We are using the power of artificial intelligence to address an age-old problem at the intersection of surgery and pathology," said corresponding author Faisal Mahmood, PhD, of the Division of Computational Pathology at BWH. "Making a rapid diagnosis from frozen tissue samples is challenging and requires specialized training, but this kind of diagnosis is a critical step in caring for patients during surgery."

For making final diagnoses, pathologists use formalin-fixed and paraffin-embedded (FFPE) tissue samples - this method preserves tissue in a way that produces high-quality images but the process is laborious and typically takes 12 to 48 hours. For a rapid diagnosis, pathologists use an approach known as cryosectioning that involves fast freezing tissue, cutting sections, and observing these thin slices under a microscope. Cryosectioning takes minutes rather than hours but can distort cellular details and compromise or tear delicate tissue.

Mahmood and co-authors developed a deep-learning model that can be used to translate between frozen sections and more commonly used FFPE tissue. In their paper, the team demonstrated that the method could be used to subtype different kinds of cancer, including glioma and non-small-cell lung cancer. The team validated their findings by recruiting pathologists to a reader study in which they were asked to make a diagnosis from images that had gone through the AI method and traditional cryosectioning images. The AI method not only improved image quality but also improved diagnostic accuracy among experts. The algorithm was also tested on independently collected data from Turkey.

The authors note that in the future, prospective clinical studies should be conducted to validate the AI method and determine if it can contribute to diagnostic accuracy and surgical decision-making in real hospital settings.

"Our work shows that AI has the potential to make a time-sensitive, critical diagnosis easier and more accessible to pathologists," said Mahmood. "And it could potentially be applied to any type of cancer surgery. It opens up many possibilities for improving diagnosis and patient care."

Ozyoruk KB, Can S, Darbaz B, Başak K, Demir D, Gokceler GI, Serin G, Hacisalihoglu UP, Kurtuluş E, Lu MY, Chen TY, Williamson DFK, Yılmaz F, Mahmood F, Turan M.
A deep-learning model for transforming the style of tissue images from cryosectioned to formalin-fixed and paraffin-embedded.
Nat Biomed Eng. 2022 Dec;6(12):1407-1419. doi: 10.1038/s41551-022-00952-9

Most Popular Now

ChatGPT Shows 'Impressive' Acc…

A new study led by investigators from Mass General Brigham has found that ChatGPT was about 72 percent accurate in overall clinical decision making, from coming up with possible diagnoses...

WiFi SPARK's Healthcare Business Re…

Leading WiFi provider WiFi SPARK is rebranding its healthcare arm as SPARK Technology Services Limited. The new identity marks the completion of the integration of the former Hospedia bedside unit...

Online AI-Based Test for Parkinson'…

An artificial intelligence (AI) tool developed by researchers at the University of Rochester can help people with Parkinson's disease remotely assess the severity of their symptoms within minutes. A study...

ChatGPT is Debunking Myths on Social Med…

ChatGPT could help to increase vaccine uptake by debunking myths around jab safety, say the authors of a study published in the peer-reviewed journal Human Vaccines and Immunotherapeutics. The researchers asked...

AI Performs Comparably to Human Readers …

Using a standardized assessment, researchers in the UK compared the performance of a commercially available artificial intelligence (AI) algorithm with human readers of screening mammograms. Results of their findings were...

Siemens Healthineers Expands Production …

Siemens Healthineers is expanding its site in Rudolstadt, Germany. By mid 2024, a new manufacturing building will be built on the site. The new manufacturing plant will produce electron accelerators...

More Cases of Breast Cancer Detected wit…

One radiologist supported by AI detected more cases of breast cancer in screening mammography than two radiologists working together, reports the ScreenTrustCAD study from Karolinska Institutet in The Lancet Digital...

ChatGPT Performs as Well as Doctors for …

The artificial intelligence chatbot ChatGPT performed as well as a trained doctor in suggesting likely diagnoses for patients being assessed in emergency medicine departments, in a pilot study to be...

Smartphone Technology Expected to Advanc…

Since the 1980s, we have known that neurological soft signs (NSS) can distinguish people with schizophrenia from psychiatrically healthy individuals. NSS are subtle neurological impairments that principally manifest as decreased...

AI may Outperform Most Humans at Creativ…

Large language model (LLM) artificial intelligence (AI) chatbots may be able to outperform the average human at a creative thinking task where the participant devises alternative uses for everyday objects...

MEDICA 2023 + COMPAMED 2023: "Where…

13 - 16 November 2023, Düsseldorf, Germany. The medical technology market is in worldwide motion and the signs ahead of MEDICA 2023 and COMPAMED 2023 in Düsseldorf as the internationally leading...

AI and Machine Learning can Successfully…

Artificial intelligence (AI) and machine learning (ML) can effectively detect and diagnose Polycystic Ovary Syndrome (PCOS), which is the most common hormone disorder among women, typically between ages 15 and...