A Simple Online Calculator Detects Liver Cirrhosis Patients at High Risk for Clinical Complications

Researchers at CeMM, the Medical University of Vienna (MedUni Vienna), and the Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD) joined efforts to use their expertise in machine learning and management of patients with cirrhosis to develop a non-invasive algorithm that can help clinicians to identify patients with cirrhosis at highest risk for severe complications. Cirrhosis develops in response to repeated injury to the liver, such as fatty liver disease or viral hepatitis. Initially, cirrhosis is mostly asymptomatic, thus, early identification of risk factors for severe complications represents an unmet clinical need.

There are two clinical stages of liver cirrhosis: compensated and decompensated. Patients with compensated liver cirrhosis have very few or even no symptoms. However, patients may progress decompensated cirrhosis, which occurs with severe complications such as internal (variceal) bleeding or by an accumulation of fluid in the abdomen (ascites) and may even lead to death. Unfortunately, the measurement of the risk of decompensation in patients with compensated cirrhosis currently requires an invasive procedure. i.e., the measurement of the hepatic venous pressure gradient (HVPG). An elevated HVPG ≥10 mmHg is associated with a higher probability of complications. Patients with an even higher HVPG of ≥16 mmHg are at imminent risk for hepatic decompensation.

In a study by first authors Jiri Reinis from Stefan Kubicek's group at CeMM and Oleksandr Petrenko from Thomas Reiberger's group at MedUni Vienna, CeMM, and LBI-RUD, machine learning models were trained on blood test parameters obtained from patients with compensated cirrhosis to detect elevated levels of portal vein pressure, thereby identifying those at risk for developing clinical complications. The study was now prominently published in the Journal of Hepatology.

Best clinical parameters for prediction

The key data sources used in the project were derived from the ongoing Vienna Cirrhosis Study, conducted at the Division of Gastroenterology and Hepatology of the MedUni Vienna at the Vienna General Hospital. For this study, HVPG measurements were performed in 163 compensated cirrhosis patients in whom blood samples were simultaneously obtained in order to determine a range of 124 biomarkers. Out of the entire set of clinical variables, three and five optimal parameters for the detection of high-risk patients were computationally determined. In the VICIS patient cohort, the model performed excellently for the identification of patients with HVPG values of ≥10 mmHg and ≥16 mmHg, respectively.

Validation of the dataset

To assess the diagnostic power of the non-invasive models to predict complications, the researchers tested their non-invasive machine learning model on a combined cohort of 1,232 patients with compensated cirrhosis from 8 European clinical centers. The novel approach was confirmed to be of excellent diagnostic value in the overall cohort and importantly is based on 3 or 5 widely available laboratory parameters only, is non-invasive, and does not require dedicated and expensive equipment. Project leader Thomas Reiberger explains "While an HVPG measurement is still required for reliable identification of patients with clinically significant or severe portal hypertension, the novel approach could be applied for prioritization for treatment to prevent decompensation or for selection of patients for clinical trials. Due to its simplicity, the proposed methodology could be eventually employed during routine check-ups at little additional cost."

Online calculator

Finally, the researchers developed an online calculator to allow clinicians to calculate the risk of decompensation for their patients with compensated cirrhosis, available at https://liver.at/vlsg/HVPG-Calculator/

Reiniš J, Petrenko O, Simbrunner B, Hofer BS, Schepis F, Scoppettuolo M, Saltini D, Indulti F, Guasconi T, Albillos A, Téllez L, Villanueva C, Brujats A, Garcia-Pagan JC, Perez-Campuzano V, Hernández-Gea V, Rautou PE, Moga L, Vanwolleghem T, Kwanten WJ, Francque S, Trebicka J, Gu W, Ferstl PG, Gluud LL, Bendtsen F, Møller S, Kubicek S, Mandorfer M, Reiberger T.
Assessment of portal hypertension severity using machine learning models in patients with compensated cirrhosis.
J Hepatol. 2022 Sep 21:S0168-8278(22)03119-1. doi: 10.1016/j.jhep.2022.09.012

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...