A Simple Online Calculator Detects Liver Cirrhosis Patients at High Risk for Clinical Complications

Researchers at CeMM, the Medical University of Vienna (MedUni Vienna), and the Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD) joined efforts to use their expertise in machine learning and management of patients with cirrhosis to develop a non-invasive algorithm that can help clinicians to identify patients with cirrhosis at highest risk for severe complications. Cirrhosis develops in response to repeated injury to the liver, such as fatty liver disease or viral hepatitis. Initially, cirrhosis is mostly asymptomatic, thus, early identification of risk factors for severe complications represents an unmet clinical need.

There are two clinical stages of liver cirrhosis: compensated and decompensated. Patients with compensated liver cirrhosis have very few or even no symptoms. However, patients may progress decompensated cirrhosis, which occurs with severe complications such as internal (variceal) bleeding or by an accumulation of fluid in the abdomen (ascites) and may even lead to death. Unfortunately, the measurement of the risk of decompensation in patients with compensated cirrhosis currently requires an invasive procedure. i.e., the measurement of the hepatic venous pressure gradient (HVPG). An elevated HVPG ≥10 mmHg is associated with a higher probability of complications. Patients with an even higher HVPG of ≥16 mmHg are at imminent risk for hepatic decompensation.

In a study by first authors Jiri Reinis from Stefan Kubicek's group at CeMM and Oleksandr Petrenko from Thomas Reiberger's group at MedUni Vienna, CeMM, and LBI-RUD, machine learning models were trained on blood test parameters obtained from patients with compensated cirrhosis to detect elevated levels of portal vein pressure, thereby identifying those at risk for developing clinical complications. The study was now prominently published in the Journal of Hepatology.

Best clinical parameters for prediction

The key data sources used in the project were derived from the ongoing Vienna Cirrhosis Study, conducted at the Division of Gastroenterology and Hepatology of the MedUni Vienna at the Vienna General Hospital. For this study, HVPG measurements were performed in 163 compensated cirrhosis patients in whom blood samples were simultaneously obtained in order to determine a range of 124 biomarkers. Out of the entire set of clinical variables, three and five optimal parameters for the detection of high-risk patients were computationally determined. In the VICIS patient cohort, the model performed excellently for the identification of patients with HVPG values of ≥10 mmHg and ≥16 mmHg, respectively.

Validation of the dataset

To assess the diagnostic power of the non-invasive models to predict complications, the researchers tested their non-invasive machine learning model on a combined cohort of 1,232 patients with compensated cirrhosis from 8 European clinical centers. The novel approach was confirmed to be of excellent diagnostic value in the overall cohort and importantly is based on 3 or 5 widely available laboratory parameters only, is non-invasive, and does not require dedicated and expensive equipment. Project leader Thomas Reiberger explains "While an HVPG measurement is still required for reliable identification of patients with clinically significant or severe portal hypertension, the novel approach could be applied for prioritization for treatment to prevent decompensation or for selection of patients for clinical trials. Due to its simplicity, the proposed methodology could be eventually employed during routine check-ups at little additional cost."

Online calculator

Finally, the researchers developed an online calculator to allow clinicians to calculate the risk of decompensation for their patients with compensated cirrhosis, available at https://liver.at/vlsg/HVPG-Calculator/

Reiniš J, Petrenko O, Simbrunner B, Hofer BS, Schepis F, Scoppettuolo M, Saltini D, Indulti F, Guasconi T, Albillos A, Téllez L, Villanueva C, Brujats A, Garcia-Pagan JC, Perez-Campuzano V, Hernández-Gea V, Rautou PE, Moga L, Vanwolleghem T, Kwanten WJ, Francque S, Trebicka J, Gu W, Ferstl PG, Gluud LL, Bendtsen F, Møller S, Kubicek S, Mandorfer M, Reiberger T.
Assessment of portal hypertension severity using machine learning models in patients with compensated cirrhosis.
J Hepatol. 2022 Sep 21:S0168-8278(22)03119-1. doi: 10.1016/j.jhep.2022.09.012

Most Popular Now

West Midlands to Digitally Transform Can…

NHS patients throughout the West Midlands are to benefit from a digital pathology programme, designed to help reduce cancer backlogs, transform services, and improve the speed and accuracy of cancer...

AI Approach may Help Identify Melanoma S…

Most deaths from melanoma - the most lethal form of skin cancer - occur in patients who were initially diagnosed with early-stage melanoma and then later experienced a recurrence that...

Siemens Healthineers and University of M…

Siemens Healthineers and UHealth - University of Miami Health System - announced a Value Partnership(1) agreement. This strategic relationship will further technological advancement and standardization of equipment at the health...

Siemens Healthineers Splits Fast-Growing…

Siemens Healthineers is splitting its Asia Pacific operations into two to allow both China and the rest of the region to achieve their full potential. China, now its own region...

Philips Advances MR Radiotherapy Imaging…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced two new advances in MR-only workflows to advance head and neck cancer radiotherapy imaging and simulation. The...

AI Transforms Smartwatch ECG Signals int…

A study published in Nature Medicine reports the ability of a smartwatch ECG to accurately detect heart failure in nonclinical environments. Researchers at Mayo Clinic applied artificial intelligence (AI) to...

3D Protein Structure Predictions Made by…

In a living being, proteins make up roughly everything: from the molecular machines running every cell's metabolism, to the tip of your hair. Encoded in the DNA, a protein may...

Siemens Healthineers Presents Two Revolu…

7 Tesla (T) Magnetom Terra.X(1) will offer excellent imaging of even the smallest structures 3T Magnetom Cima.X(2) more than doubles the gradient amplitude(3) AI algorithms which can reduce scanning...

Integrating Digital Twins and Deep Learn…

Digital twins are virtual representations of devices and processes that capture the physical properties of the environment and operational algorithms/techniques in the context of medical devices and technologies. Digital twins...

Willingness to Use Video Telehealth Incr…

Americans' use and willingness to use video telehealth has increased since the beginning of the COVID-19 pandemic, rising most sharply among Black Americans and people with less education, according to...

New Group to Advance Digital Twins in He…

EDITH (Ecosystem for Digital Twins in Healthcare) Coordination and Support Action (CSA) - a group made up of numerous internationally renowned research institutions, professional associations, companies, and hospitals of excellence...

DMEA Call for Papers: Supporting Digital…

25 - 27 April 2023, Berlin, Germany. Health meets digitalisation: from 25 to 27 April 2023 at DMEA - Connecting Digital Health, all actors aiming to promote health IT will be...