Machine Learning Creates Opportunity for New Personalized Therapies

Researchers at the University of Michigan Rogel Cancer Center have developed a computational platform that can predict new and specific metabolic targets in ovarian cancer, suggesting opportunities to develop personalized therapies for patients that are informed by the genetic makeup of their tumors. The study appeared in Nature Metabolism.

Cancer mutations occur frequently in ovarian cancer, giving cells a growth advantage that contributes to the aggressiveness of the disease. But sometimes deletions of certain genes can occur alongside these mutations and make cells vulnerable to treatment. Still, cancer cells grow so well because paralog genes can compensate for this loss of function and continue to drive tumor formation.

Deepak Nagrath, Ph.D., associate professor of biomedical engineering who led this study, wanted to understand more about these compensatory genes as they relate to metabolism. "When a gene is deleted, metabolic genes, which allow the cancer cells to grow, are also deleted. The theory is that vulnerabilities emerge in the metabolism of cancer cells due to specific genetic alterations."

When genes that regulate metabolic function are deleted, cancer cells essentially rewire their metabolism to come up with a backup plan. Using a method that integrates complex metabolic modeling, machine learning and optimization theory in cell-line and mouse models, the team discovered an unexpected function of an ovarian cancer enzyme, MTHFD2. This was specific to ovarian cancer cells with an impairment to the mitochondria, due to a commonly occurring deletion of UQCR11. This led to a critical imbalance of an essential metabolite, NAD+, within the mitochondria.

The algorithm predicted that MTHFD2 surprisingly reversed its role to provide NAD+ in the cells. This created a vulnerability that could be targeted to selectively kill off the cancer cells while minimally affecting healthy cells.

"Personalized therapies like this are becoming an increasing possibility for improving efficacy of first-line cancer treatments," says research fellow and first author of this study Abhinav Achreja, Ph.D. "There are several approaches to discovering personalized targets for cancer, and several platforms predict targets based on big data analyses. Our platform makes predictions by considering the metabolic functionality and mechanism, increasing the chances of success when translating to the clinic."

Achreja A, Yu T, Mittal A et al.
Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer.
Nat Metab 4, 1119-1137, 2022. doi: 10.1038/s42255-022-00636-3

Most Popular Now

West Midlands to Digitally Transform Can…

NHS patients throughout the West Midlands are to benefit from a digital pathology programme, designed to help reduce cancer backlogs, transform services, and improve the speed and accuracy of cancer...

AI Approach may Help Identify Melanoma S…

Most deaths from melanoma - the most lethal form of skin cancer - occur in patients who were initially diagnosed with early-stage melanoma and then later experienced a recurrence that...

Siemens Healthineers and University of M…

Siemens Healthineers and UHealth - University of Miami Health System - announced a Value Partnership(1) agreement. This strategic relationship will further technological advancement and standardization of equipment at the health...

Siemens Healthineers Splits Fast-Growing…

Siemens Healthineers is splitting its Asia Pacific operations into two to allow both China and the rest of the region to achieve their full potential. China, now its own region...

Philips Advances MR Radiotherapy Imaging…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced two new advances in MR-only workflows to advance head and neck cancer radiotherapy imaging and simulation. The...

AI Transforms Smartwatch ECG Signals int…

A study published in Nature Medicine reports the ability of a smartwatch ECG to accurately detect heart failure in nonclinical environments. Researchers at Mayo Clinic applied artificial intelligence (AI) to...

3D Protein Structure Predictions Made by…

In a living being, proteins make up roughly everything: from the molecular machines running every cell's metabolism, to the tip of your hair. Encoded in the DNA, a protein may...

Siemens Healthineers Presents Two Revolu…

7 Tesla (T) Magnetom Terra.X(1) will offer excellent imaging of even the smallest structures 3T Magnetom Cima.X(2) more than doubles the gradient amplitude(3) AI algorithms which can reduce scanning...

Integrating Digital Twins and Deep Learn…

Digital twins are virtual representations of devices and processes that capture the physical properties of the environment and operational algorithms/techniques in the context of medical devices and technologies. Digital twins...

New Group to Advance Digital Twins in He…

EDITH (Ecosystem for Digital Twins in Healthcare) Coordination and Support Action (CSA) - a group made up of numerous internationally renowned research institutions, professional associations, companies, and hospitals of excellence...

Willingness to Use Video Telehealth Incr…

Americans' use and willingness to use video telehealth has increased since the beginning of the COVID-19 pandemic, rising most sharply among Black Americans and people with less education, according to...

DMEA Call for Papers: Supporting Digital…

25 - 27 April 2023, Berlin, Germany. Health meets digitalisation: from 25 to 27 April 2023 at DMEA - Connecting Digital Health, all actors aiming to promote health IT will be...