New Tool Overcomes Major Hurdle in Clinical AI Design

Harvard Medical School scientists and colleagues at Stanford University have developed an artificial intelligence (AI) diagnostic tool that can detect diseases on chest X-rays directly from natural-language descriptions contained in accompanying clinical reports.

The step is deemed a major advance in clinical AI design because most current AI models require laborious human annotation of vast reams of data before the labeled data are fed into the model to train it.

A report on the work, published Sept. 15 in Nature Biomedical Engineering, shows that the model, called CheXzero, performed on par with human radiologists in its ability to detect pathologies on chest X-rays.

The team has made the code for the model publicly available for other researchers.

Most AI models require labeled datasets during their "training" so they can learn to correctly identify pathologies. This process is especially burdensome for medical image-interpretation tasks since it involves large-scale annotation by human clinicians, which is often expensive and time-consuming. For instance, to label a chest X-ray dataset, expert radiologists would have to look at hundreds of thousands of X-ray images one by one and explicitly annotate each one with the conditions detected. While more recent AI models have tried to address this labeling bottlenck by learning from unlabeled data in a "pre-training" stage, they eventually require fine-tuning on labeled data to achieve high performance.

By contrast, the new model is self-supervised, in the sense that it learns more independently, without the need for hand-labeled data before or after training. The model relies solely on chest X-rays and the English-language notes found in accompanying X-ray reports.

"We’re living the early days of the next-generation medical AI models that are able to perform flexible tasks by directly learning from text," said study lead investigator Pranav Rajpurkar, assistant professor of biomedical informatics in the Blavatnik Institute at HMS. "Up until now, most AI models have relied on manual annotation of huge amounts of data - to the tune of 100,000 images - to achieve a high performance. Our method needs no such disease-specific annotations.

"With CheXzero, one can simply feed the model a chest X-ray and corresponding radiology report, and it will learn that the image and the text in the report should be considered as similar - in other words, it learns to match chest X-rays with their accompanying report," Rajpurkar added. "The model is able to eventually learn how concepts in the unstructured text correspond to visual patterns in the image."

The model was "trained" on a publicly available dataset containing more than 377,000 chest X-rays and more than 227,000 corresponding clinical notes. Its performance was then tested on two separate datasets of chest X-rays and corresponding notes collected from two different institutions, one of which was in a different country. This diversity of datasets was meant to ensure that the model performed equally well when exposed to clinical notes that may use different terminology to describe the same finding.

Upon testing, CheXzero successfully identified pathologies that were not explicitly annotated by human clinicians. It outperformed other self-supervised AI tools and performed with accuracy similar to that of human radiologists.

The approach, the researchers said, could eventually be applied to imaging modalities well beyond X-rays, including CT scans, MRIs, and echocardiograms.

"CheXzero shows that accuracy of complex medical image interpretation no longer needs to remain at the mercy of large labeled datasets," said study co-first author Ekin Tiu, an undergraduate student at Stanford and a visiting researcher at HMS. "We use chest X-rays as a driving example, but in reality CheXzero's capability is generalizable to a vast array of medical settings where unstructured data is the norm, and precisely embodies the promise of bypassing the large-scale labeling bottleneck that has plagued the field of medical machine learning."

Tiu E, Talius E, Patel P et al.
Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning.
Nat. Biomed. Eng, 2022. doi: 10.1038/s41551-022-00936-9

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...