No One-Size-Fits-All AI Approach Works for Prevention, Diagnosis or Treatment Using Precision Medicine

A Rutgers analysis of dozens of artificial intelligence (AI) software programs used in precision, or personalized, medicine to prevent, diagnose and treat disease found that no program exists that can be used for all treatments.

Precision medicine, a technology still in its infancy, is an approach to treatment that uses information about an individual's medical history and genetic profile and relates it to the information of many others to find patterns that can help prevent, diagnose or treat a disease. The AI-based approach rests on a high level of both computing power and machine-learning intelligence because of the enormous scope of medical and genetic information scoured and analyzed for patterns.

"Precision medicine is one of the most trending subjects in basic and medical science today," said Zeeshan Ahmed, an assistant professor of medicine at Rutgers Robert Wood Johnson Medical School who led the study, published in Briefings in Bioinformatics. "Major reasons include its potential to provide predictive diagnostics and personalized treatment to variable known and rare disorders. However, until now, there has been very little effort exerted in organizing and understanding the many computing approaches to this field. We want to pave the way for a new data-centric era of discovery in health care."

The comparative and systematic review, believed by the authors to be one of the first of its kind, identified 32 of the most prevalent precision medicine AI approaches used to study preventive treatments for a range of diseases, including obesity, Alzheimer's, inflammatory bowel disease, breast cancer and major depressive disorder. The bevy of AI approaches analyzed in the study - the researchers combed through five years of high-quality medical literature - suggest the field is advancing rapidly but is suffering from disorganization, Ahmed said.

In AI, software programs simulate human intelligence processes. In machine learning, a subcategory of AI, programs are designed to "learn" as they process more and more data, becoming ever more accurate at predicting outcomes. The effort rests on algorithms, step-by-step procedures for solving a problem or performing a computation.

Researchers such as Ahmed, who conducts studies on cardiovascular genomics at the Rutgers Institute for Health, Health Care Policy and Aging Research (IFH), are racing to collect and analyze complex biological data while also developing the computational systems that undergird the endeavor.

Because the use of genetics is "arguably the most data-rich and complex component of precision medicine," Ahmed said, the team focused especially on reviewing and comparing scientific objectives, methodologies, data sources, ethics and gaps in approaches used.

Those interested in precision medicine, he said, can look to the paper for guidance as to which AI programs may be best suited for their research.

To aid the advent of precision medicine, the study concluded that the scientific community needs to embrace several "grand challenges," from addressing general issues such as improved data standardization and enhanced protection of personal identifying information to more technical issues such as correcting for errors in genomic and clinical data.

"AI has the potential to play a vital role to achieve significant improvements in providing better individualized and population healthcare at lower costs," Ahmed said. "We need to strive to address possible challenges that continue to slow the advancements of this breakthrough treatment approach."

Other Rutgers researchers involved in the study included Sreya Vadapalli and Habiba Abdelhalim, research assistants at the IFH, and Saman Zeeshan, a bioinformatics research scientist and former postdoctoral research associate at the Rutgers Cancer Institute of New Jersey.

Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z.
Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine.
Brief Bioinform. 2022 May 21:bbac191. doi: 10.1093/bib/bbac191

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...