No One-Size-Fits-All AI Approach Works for Prevention, Diagnosis or Treatment Using Precision Medicine

A Rutgers analysis of dozens of artificial intelligence (AI) software programs used in precision, or personalized, medicine to prevent, diagnose and treat disease found that no program exists that can be used for all treatments.

Precision medicine, a technology still in its infancy, is an approach to treatment that uses information about an individual's medical history and genetic profile and relates it to the information of many others to find patterns that can help prevent, diagnose or treat a disease. The AI-based approach rests on a high level of both computing power and machine-learning intelligence because of the enormous scope of medical and genetic information scoured and analyzed for patterns.

"Precision medicine is one of the most trending subjects in basic and medical science today," said Zeeshan Ahmed, an assistant professor of medicine at Rutgers Robert Wood Johnson Medical School who led the study, published in Briefings in Bioinformatics. "Major reasons include its potential to provide predictive diagnostics and personalized treatment to variable known and rare disorders. However, until now, there has been very little effort exerted in organizing and understanding the many computing approaches to this field. We want to pave the way for a new data-centric era of discovery in health care."

The comparative and systematic review, believed by the authors to be one of the first of its kind, identified 32 of the most prevalent precision medicine AI approaches used to study preventive treatments for a range of diseases, including obesity, Alzheimer's, inflammatory bowel disease, breast cancer and major depressive disorder. The bevy of AI approaches analyzed in the study - the researchers combed through five years of high-quality medical literature - suggest the field is advancing rapidly but is suffering from disorganization, Ahmed said.

In AI, software programs simulate human intelligence processes. In machine learning, a subcategory of AI, programs are designed to "learn" as they process more and more data, becoming ever more accurate at predicting outcomes. The effort rests on algorithms, step-by-step procedures for solving a problem or performing a computation.

Researchers such as Ahmed, who conducts studies on cardiovascular genomics at the Rutgers Institute for Health, Health Care Policy and Aging Research (IFH), are racing to collect and analyze complex biological data while also developing the computational systems that undergird the endeavor.

Because the use of genetics is "arguably the most data-rich and complex component of precision medicine," Ahmed said, the team focused especially on reviewing and comparing scientific objectives, methodologies, data sources, ethics and gaps in approaches used.

Those interested in precision medicine, he said, can look to the paper for guidance as to which AI programs may be best suited for their research.

To aid the advent of precision medicine, the study concluded that the scientific community needs to embrace several "grand challenges," from addressing general issues such as improved data standardization and enhanced protection of personal identifying information to more technical issues such as correcting for errors in genomic and clinical data.

"AI has the potential to play a vital role to achieve significant improvements in providing better individualized and population healthcare at lower costs," Ahmed said. "We need to strive to address possible challenges that continue to slow the advancements of this breakthrough treatment approach."

Other Rutgers researchers involved in the study included Sreya Vadapalli and Habiba Abdelhalim, research assistants at the IFH, and Saman Zeeshan, a bioinformatics research scientist and former postdoctoral research associate at the Rutgers Cancer Institute of New Jersey.

Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z.
Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine.
Brief Bioinform. 2022 May 21:bbac191. doi: 10.1093/bib/bbac191

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...