AI Analyses Neuron Changes to Detect whether Drugs are Effective for Neurodegenerative Disease Patients

A research group from Nagoya University in Japan has developed an artificial intelligence (AI) for analyzing cell images that uses machine learning to predict the therapeutic effect of drugs. Called in silico FOCUS, this new technology may aid in the discovery of therapeutic agents for neurodegenerative disorders such as Kennedy disease.

Current treatments for neurodegenerative diseases often have harsh side effects, including sexual dysfunction and blocking muscle tissue formation. However, researchers searching for new, less harmful treatments have been hindered by the lack of effective screening technologies to discern whether a drug is effective. One promising concept is the 'anomaly discrimination concept', meaning neurons that respond to treatment have slight differences in shape compared to those that do not. However, these subtle differences are difficult to discern with the naked eye. Current computer technologies are also too slow to perform the analysis.

A group of Nagoya University professors, led by Associate Professor Ryuji Kato and Assistant Professor Kei Kanie of the Graduate School of Pharmaceutical Sciences, and Professor Masahisa Katsuno and Assistant Professor Madoka Iida of the Graduate School of Medicine, has developed a new artificial intelligence technology called in silico FOCUS. It analyzes the cell shape of model neurons and uses that information to assess whether they respond to therapeutic drugs. They published their results in the journal Scientific Reports.

The researchers tested the AI on a model of cells being treated for Kennedy disease, a neurodegenerative disorder that leads to motor neuron death. in silico FOCUS constructed a robust image-based classification model that had 100% accuracy in identifying the state of recovery of the model cells.

"This technology enables a highly sensitive and stable evaluation of the effects of therapeutic agents through the analysis of changes in the shape of diseased model cells to those of healthy cells, which we could not normally distinguish," Professor Kato explains. "This is an ultra-efficient screening technology that can predict drug efficacy by simply capturing images, thus reducing the time required for drug efficacy analysis and evaluation from several hours with several hundred thousand cells to only a few minutes. It allows for a highly accurate prediction of therapeutic effects, without complicated and invasive experiments."

Kato concludes: "These results suggest the possibility of accelerating the development of new drugs and we expect them to be widely applied to the discovery of therapeutic drugs for diseases that have been difficult to explore."

This research was supported by the FY2019 Nagoya University NU Cross-Departmental Innovation Creation Project.

Imai Y, Iida M, Kanie K, Katsuno M, Kato R.
Label-free morphological sub-population cytometry for sensitive phenotypic screening of heterogenous neural disease model cells.
Sci Rep. 2022 Jun 16;12(1):9296. doi: 10.1038/s41598-022-12250-0

Most Popular Now

Northern Lincolnshire and Goole NHS Foun…

Northern Lincolnshire and Goole NHS Foundation Trust (NLAG) has launched new NHS App features to transform the way patients access and manage their appointments within the NHS. The programme, known...

Orion Health Strengthens French Business…

Orion Health is strengthening its presence in France with the appointment of digital health industry heavyweight, Tristan Debove, to lead its operations. Tristan Debove has more than 25 years of experience...

Genomics England Deploys Sectra Imaging …

Genomics England has completed installation of an enterprise imaging system that will help to support a world-pioneering initiative for cancer research. The programme is linking whole genome sequencing, pathology and...

AI Approach may Help Detect Alzheimer's …

Although investigators have made strides in detecting signs of Alzheimer's disease using high-quality brain imaging tests collected as part of research studies, a team at Massachusetts General Hospital (MGH) recently...

AI Predicts Cancer Patient Survival by R…

A team of researchers from the University of British Columbia and BC Cancer have developed an artificial intelligence (AI) model that predicts cancer patient survival more accurately and with more...

Virtual Reality Games can be Used as a T…

Virtual reality gamers (VR game) who finished it faster than their fellow gamers also have higher levels of general intelligence and processing capacity. This was the result of a study...

Will Future Computers Run on Human Brain…

A "biocomputer" powered by human brain cells could be developed within our lifetime, according to Johns Hopkins University researchers who expect such technology to exponentially expand the capabilities of modern...

Detecting Anaemia Earlier in Children Us…

Researchers at UCL and University of Ghana have successfully predicted whether children have anaemia using only a set of smartphone images. The study, published in PLOS ONE, brought together researchers and...

AI can Help Optimize CT Scan X-Ray Radia…

Computed tomography (CT) is one of the most powerful and well-established diagnostic tools available to modern medicine. An increasing number of people have been opting for CT scans, raising concerns...

Study Reveals Smartphone Spyware Apps ar…

Smartphone spyware apps that allow people to spy on each other are not only hard to notice and detect, they also will easily leak the sensitive personal information they...

Orion Health Appoints Mark Hindle as Vic…

Orion Health has appointed Mark Hindle as its new vice president for the UK and Ireland. Mark has joined the leading supplier of digital tools to improve healthcare experience from...