Human-Robot-AI Teamwork Accelerates Regenerative Medicine

A joint research group led by Genki Kanda at the RIKEN Center for Biosystems Dynamics Research (BDR) has developed a robotic artificial intelligence (AI) system for autonomously determining the optimal conditions for growing replacement retina layers necessary for vision. The AI controlled a trial and error process spanning 200 million possible conditions that succeeded in improving cell culture recipes used in regenerative medicine. This achievement, published in the scientific journal eLife on June 28, is just one example of how the automated design and execution of scientific experiments can increase the efficiency and speed of life science research in general.

Research in regenerative medicine often requires numerous experiments that are both time-consuming and labor-intensive. In particular, creating specific tissue from stem cells - a process called induced cell differentiation - involves months of work, and the degree of success depends on a wide range of variables. Finding the optimal type, dose, and timing of reagents, as well as optimal physical variables such as pipette strength, cell transfer time, and temperature is difficult and requires an enormous amount trial and error. As Kanda explains, "because minute differences in physical conditions have a significant impact on quality, and because inducing cell differentiation takes weeks to months of time in culture, the impact of a tiny difference in timing on day 3 might not be detected for several months."

To make this process more efficient and practical, the BDR team set out to develop an autonomous experimental system that can determine the optimal conditions and grow functional retinal pigment layers from stem cells. Retinal pigment epithelium (RPE) cells were chosen because degeneration of these cells is a common age-related disorder that leaves people unable to see. Equally important, transplanted RPE retinal layers have already been shown to have some clinical success.

For autonomous experiments to be successful, the robot must repeatedly produce the same series of precise movements and manipulations, and the AI must be able to evaluate the results and formulate the next experiment. The new system accomplishes these goals using a general-purpose humanoid robot - named Maholo - capable of highly precise life science experimental behavior. Maholo is controlled by AI software that uses a newly designed optimization algorithm to determine which parameters should be changed, and how they should be changed, to improve differentiation efficiency in the next round of experiments.

Researchers input the necessary protocols for generating RPE cells from stem cells into Maholo. While RPE cells were successfully generated in all experiments, efficiency was only 50%. Thus, for every 100 stem cells, only about 50 became RPE cells. After establishing this baseline, the AI initiated the optimization process to determine the best conditions among all chemical and physical parameters. What would have taken humans over two and a half years to complete only took the robotic AI system 185 days, and resulted in a 90% rate of differentiation efficiency. Practically, these cells displayed many of the typical biological markers that would make them suitable for transplant into an eye with a damaged RPE cell layer.

The success of the new system goes beyond the immediate results. "We chose to differentiate RPE cells from stem cells as a model," says Kanda, "but in principle, combining a precision robot with the optimization algorithms will enable autonomous trial and error experiments in many areas of life science."

However, the researchers emphasize that the goal of the study is not to replace human lab workers with robots. "Using robots and AI for carrying out experiments will be of great interest to the public," says Kanda. "However, it is a mistake to see them as replacements. Our vision is for people to do what they are good at, which is being creative. We can use robots and AI for the trial-and-error parts of experiments that require repeatable precision and take up a lot of time, but do not require thinking."

Genki N Kanda, Taku Tsuzuki, Motoki Terada, Noriko Sakai, Naohiro Motozawa, Tomohiro Masuda, Mitsuhiro Nishida, Chihaya T Watanabe, Tatsuki Higashi, Shuhei A Horiguchi, Taku Kudo, Motohisa Kamei, Genshiro A Sunagawa, Kenji Matsukuma, Takeshi Sakurada, Yosuke Ozawa, Masayo Takahashi, Koichi Takahashi, Tohru Natsume.
Robotic search for optimal cell culture in regenerative medicine.
eLife 11:e77007. doi: 10.7554/eLife.77007

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...