Language Matters when Describing Weight Loss Goals

Obesity affects millions of individuals worldwide and is associated with a significantly increased risk for cardiovascular and metabolic diseases. A study publishing June 16th in the open access journal PLOS Digital Health by Annabell Ho at Noom, Inc. New York, United States, suggests that while setting a weight-loss goal, analytical language was associated with greater weight loss success and a lower likelihood of attrition.

Outcomes for behavioral interventions treating obesity vary widely, with some individuals dropping off the program before they receive the full intervention. Yet the factors contributing to attrition or weight loss are poorly understood. To better understand how language may affect weight loss and program attrition, researchers conducted a retrospective study of 1,350 Noom Weight - an app-based weight management program - users who paid to participate in a 16-week program. Each participant set an initial goal and interacted with a coach to provide more detail about their weight loss goals. The researchers then analyzed the language using an automated text analysis program and calculated weight loss as well as weight loss and the dropout rate by analyzing program activity data.

The authors found that in goal striving conversations, such as talking to a coach about efforts to pursue a goal, analytical versus present-focused language was associated with greater weight loss and lower likelihood of attrition. While these findings may be useful, the study did not examine other related variables, for example the effects of education level or English proficiency on goal-setting language. Future studies should focus on the factors mediating the relationship between language and outcomes to confirm exactly why analytical language is helpful.

According to the authors, "Our results are among the first to identify individuals' language, which has not been studied much previously, as relevant and informative for understanding weight loss and dropout. This raises directions for future research to improve intervention development and ascertain whether language is informative in other lifestyle behavior change interventions."

Ho adds, "Using analytical language, for example analyzing what’s important and why, predicts more weight loss and less program attrition on a digital weight loss program. On the other hand, using words that are more self-focused or present-focused like ‘I’ and ‘me’ predict less weight loss and more attrition."

Ho AS, Behr H, Mitchell ES, Yang Q, Lee J, May CN, et al.
Goal language is associated with attrition and weight loss on a digital program: Observational study.
PLOS Digit Health 1(6): e0000050. 2022. doi: 10.1371/journal.pdig.0000050

Most Popular Now

Open Call HORIZON-MISS-2022-CANCER-01-04…

The overall goal of the Mission on Cancer[1] and the Europe's Beating Cancer Plan[2] includes a better quality of life for patients and their families living with, and after, cancer. Project...

Researchers Use AI to Predict Cancer Ris…

An artificial intelligence (AI) tool helps doctors predict the cancer risk in lung nodules seen on CT, according to a new study published in the journal Radiology. Pulmonary nodules appear as...

Insilico Medicine Raises $60 Million in …

Insilico Medicine, a clinical-stage end-to-end artificial intelligence (AI)-driven drug discovery company, announced today that it has completed a $60 million Series D financing from a syndicate of global investors with...

Speech Analysis App Predicts Worsening H…

A voice analysis app used by heart failure patients at home recognises fluid in the lungs three weeks before an unplanned hospitalisation or escalation in outpatient drug treatment. The late...

Siemens Healthineers and Penta Hospitals…

Penta Hospitals International, the largest multi-national hospital chain in Central and Eastern Europe, agreed a strategic partnership with Siemens Healthineers valued at over 30 million euros. Penta Hospitals International operates...

Screening for Diabetic Retinopathy Prove…

Both telemedicine and community screening for diabetic retinopathy (DR) in rural and urban settings are cost-effective in China, and telemedicine screening programs are more cost-effective, according to a study led...

KTU Researchers Investigate the Links Be…

In recent years Alzheimer's disease has been on the rise throughout the world and is rarely diagnosed at an early stage when it can still be effectively controlled. Using artificial...

Researchers Develop Smartphone-Powered M…

A University of Minnesota Twin Cities research team has developed a new microfluidic chip for diagnosing diseases that uses a minimal number of components and can be powered wirelessly by...

Philips' Future Health Index 2022 Report…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced the publication of its Future Health Index (FHI) 2022 report: 'Healthcare hits reset: Priorities shift as...

App Detecting Jaundice in Babies a Succe…

A smartphone app that identifies severe jaundice in newborn babies by scanning their eyes could be a life-saver in areas that lack access to expensive screening devices, suggests a study...

InterSystems Wins Data Driven Product of…

InterSystems, a provider of next-generation solutions for enterprise digital transformation to help customers solve the most critical data challenges, has announced it received the prestigious Data Driven Product of the...