Tulane University Study Uses AI to Detect Colorectal Cancer

A Tulane University researcher found that artificial intelligence (AI) can accurately detect and diagnose colorectal cancer from tissue scans as well or better than pathologists, according to a new study in the journal Nature Communications.

The study, which was conducted by researchers from Tulane, Central South University in China, the University of Oklahoma Health Sciences Center, Temple University, and Florida State University, was designed to test whether AI could be a tool to help pathologists keep pace with the rising demand for their services.

Pathologists evaluate and label thousands of histopathology images on a regular basis to tell whether someone has cancer. But their average workload has increased significantly and can sometimes cause unintended misdiagnoses due to fatigue.

"Even though a lot of their work is repetitive, most pathologists are extremely busy because there's a huge demand for what they do but there’s a global shortage of qualified pathologists, especially in many developing countries" said Dr. Hong-Wen Deng, professor and director of the Tulane Center of Biomedical Informatics and Genomics at Tulane University School of Medicine. "This study is revolutionary because we successfully leveraged artificial intelligence to identify and diagnose colorectal cancer in a cost-effective way, which could ultimately reduce the workload of pathologists."

To conduct the study, Deng and his team collected over 13,000 images of colorectal cancer from 8,803 subjects and 13 independent cancer centers in China, Germany and the United States. Using the images, which were randomly selected by technicians, they built a machine assisted pathological recognition program that allows a computer to recognize images that show colorectal cancer, one of the most common causes of cancer related deaths in Europe and America.

"The challenges of this study stemmed from complex large image sizes, complex shapes, textures, and histological changes in nuclear staining," Deng said. "But ultimately the study revealed that when we used AI to diagnose colorectal cancer, the performance is shown comparable to and even better in many cases than real pathologists."

The area under the receiver operating characteristic (ROC) curve or AUC is the performance measurement tool that Deng and his team used to determine the success of the study. After comparing the computer’s results with the work of highly experienced pathologists who interpreted data manually, the study found that the average pathologist scored at .969 for accurately identifying colorectal cancer manually. The average score for the machine-assisted AI computer program was .98, which is comparable if not more accurate.

Using artificial intelligence to identify cancer is an emerging technology and hasn’t yet been widely accepted. Deng’s hope is that the study will lead to more pathologists using prescreening technology in the future to make quicker diagnoses.

"It's still in the research phase and we haven't commercialized it yet because we need to make it more user friendly and test and implement in more clinical settings. But as we develop it further, hopefully it can also be used for different types of cancer in the future. Using AI to diagnose cancer can expedite the whole process and will save a lot of time for both patients and clinicians."

Yu G, Sun K, Xu C, Shi XH, Wu C, Xie T, Meng RQ, Meng XH, Wang KS, Xiao HM, Deng HW.
Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images.
Nat Commun. 2021 Nov 2;12(1):6311. doi: 10.1038/s41467-021-26643-8

Most Popular Now

Philips and IJsselland Hospital Sign Lon…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it has signed a 12-year strategic partnership with IJsselland Hospital (Capelle aan den Ijssel, The Netherlands)...

Computer Programs and Mobile Apps may He…

The COVID-19 pandemic has had a major impact on mental health across the globe. Depression is predicted to be the leading cause of lost life years due to illness by...

AI Points the Way to Better Doctor-Patie…

A computer analysis of hundreds of thousands of secure email messages between doctors and patients found that most doctors use language that is too complex for their patients to understand...

Mayo Clinic Researchers Use AI, Biomarke…

Treatment options for rheumatoid arthritis have often relied on trial and error. Now Mayo Clinic researchers are exploring the use of artificial intelligence (AI) and pharmacogenomics to predict how patients...

Could EKGs Help Doctors use AI to Detect…

Pulmonary embolisms are dangerous, lung-clogging blot clots. In a pilot study, scientists at the Icahn School of Medicine at Mount Sinai showed for the first time that artificial intelligence (AI)...

Open Call DIGITAL-2021-DEPLOY-01-TWINS-H…

The development of digital twins in healthcare (DTH) has progressed substantially, profiting from advances in science and technology. In order to exploit their benefits in view of better prevention approaches...

Computer Model of Blood Enzyme

Membrane-associated proteins play a vital role in a variety of cellular processes, yet little is known about the membrane-association mechanism. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is one such protein with an...

Mjog by Livi Launches Remote Monitoring …

Mjog by Livi has launched a remote monitoring tool that will help GPs support and monitor people with depression through messages sent to their smartphones. The latest data from the Office...

4.5 Million Euros in EU Funding for Saar…

This year, three computer scientists from Saarbrücken were awarded an "ERC Starting Grant" by the European Research Council. This award, endowed with 1.5 million euros each, is among the most...

2022 EU4Health Work Programme Adopted to…

Today the Commission has adopted the second EU4Health work programme. In 2022, the EU4Health will continue to invest in building stronger, more resilient health systems and pave the way for...

Five NHS Trusts in Surrey and Sussex to …

A consortium of NHS trusts that covers a population of circa 1.2 million will gain immediate access to important patient imaging, and will mobilise a regional workforce for patients, following...

Helping Cancer Patients Avoid Excessive …

A Case Western Reserve University-led team of scientists has used Artificial Intelligence (AI) to identify which patients with certain head and neck cancers would benefit from reducing the intensity of...