AI Tool Improves Accuracy of Breast Cancer Imaging

A computer program trained to see patterns among thousands of breast ultrasound images can aid physicians in accurately diagnosing breast cancer, a new study shows.

When tested separately on 44,755 already completed ultrasound exams, the artificial intelligence (AI) tool improved radiologists' ability to correctly identify the disease by 37 percent and reduced the number of tissue samples, or biopsies, needed to confirm suspect tumors by 27 percent.

Led by researchers from the Department of Radiology at NYU Langone Health and its Laura and Isaac Perlmutter Cancer Center, the team’s AI analysis is believed to be the largest of its kind, involving 288,767 separate ultrasound exams taken from 143,203 women treated at NYU Langone hospitals in New York City between 2012 and 2018. The team’s report publishes online Sept. 24 in the journal Nature Communications.

"Our study demonstrates how artificial intelligence can help radiologists reading breast ultrasound exams to reveal only those that show real signs of breast cancer and to avoid verification by biopsy in cases that turn out to be benign," says study senior investigator Krzysztof Geras, PhD.

Ultrasound exams use high-frequency sound waves passing through tissue to construct real-time images of breast or other tissues. Although not generally used as a breast cancer screening tool, it has served as an alternative (to mammography) or follow-up diagnostic test for many women, says Geras, an assistant professor in the Department of Radiology at NYU Grossman School of Medicine and a member of the Perlmutter Cancer Center.

Ultrasound is cheaper, more widely available in community clinics, and does not involve exposure to radiation, the researchers say. Moreover, ultrasound is better than mammography for penetrating dense breast tissue and distinguishing packed but healthy cells from compact tumors.

However, the technology has also been found to result in too many false diagnoses of breast cancer, producing anxiety and unnecessary procedures for women. Some studies have shown that a majority of breast ultrasound exams indicating signs of cancer turn out to be noncancerous after biopsy.

"If our efforts to use machine learning as a triaging tool for ultrasound studies prove successful, ultrasound could become a more effective tool in breast cancer screening, especially as an alternative to mammography, and for those with dense breast tissue," says study co-investigator and radiologist Linda Moy, MD. "Its future impact on improving women's breast health could be profound," adds Moy, a professor at NYU Grossman School of Medicine and a member of the Perlmutter Cancer Center.

Geras cautions that while his team's initial results are promising, his team only looked at past exams in their latest analysis, and clinical trials of the tool in current patients and real-world conditions are needed before it can be routinely deployed. He also has plans to refine the AI software to include additional patient information, such as a woman's added risk from having a family history or genetic mutation tied to breast cancer, which was not included in their latest analysis.

For the study, over half of ultrasound breast examinations were used to create the computer program. Ten radiologists then each reviewed a separate set of 663 breast exams, with an average accuracy of 92 percent. When aided by the AI model, their average accuracy in diagnosing breast cancer improved to 96 percent. All diagnoses were checked against tissue biopsy results.

The latest statistics from the American Cancer Society estimate that one in eight women (13 percent) in the U.S. will be diagnosed with breast cancer over their lifetime, with more than 300,000 positive diagnoses in 2021 alone.

Shen Y, Shamout FE, Oliver JR, Witowski J, Kannan K, Park J, Wu N, Huddleston C, Wolfson S, Millet A, Ehrenpreis R, Awal D, Tyma C, Samreen N, Gao Y, Chhor C, Gandhi S, Lee C, Kumari-Subaiya S, Leonard C, Mohammed R, Moczulski C, Altabet J, Babb J, Lewin A, Reig B, Moy L, Heacock L, Geras KJ.
Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams.
Nat Commun. 2021 Sep 24;12(1):5645. doi: 10.1038/s41467-021-26023-2

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...