World First for AI and Machine Learning to Treat COVID-19 Patients Worldwide

Addenbrooke's Hospital in Cambridge along with 20 other hospitals from across the world and healthcare technology leader, NVIDIA, have used artificial intelligence (AI) to predict COVID patients' oxygen needs on a global scale.

The research was sparked by the pandemic and set out to build an AI tool to predict how much extra oxygen a COVID-19 patient may need in the first days of hospital care, using data from across four continents.

The technique, known as federated learning, used an algorithm to analyse chest x-rays and electronic health data from hospital patients with COVID symptoms.

To maintain strict patient confidentiality, the patient data was fully anonymised and an algorithm was sent to each hospital so no data was shared or left its location.

Once the algorithm had ‘learned’ from the data, the analysis was brought together to build an AI tool which could predict the oxygen needs of hospital COVID patients anywhere in the world.

Published today in Nature Medicine, the study dubbed EXAM (for EMR CXR AI Model), is one of the largest, most diverse clinical federated learning studies to date.

To check the accuracy of EXAM, it was tested out in a number of hospitals across five continents, including Addenbrooke’s Hospital. The results showed it predicted the oxygen needed within 24 hours of a patient's arrival in the emergency department, with a sensitivity of 95 per cent and a specificity of over 88 per cent.

"Federated learning has transformative power to bring AI innovation to the clinical workflow," said Professor Fiona Gilbert, who led the study in Cambridge and is honorary consultant radiologist at Addenbrooke's Hospital and chair of radiology at the University of Cambridge School of Clinical Medicine.

"Our continued work with EXAM demonstrates that these kinds of global collaborations are repeatable and more efficient, so that we can meet clinicians' needs to tackle complex health challenges and future epidemics."

First author on the study, Dr Ittai Dayan, from Mass General Bingham in the US, where the EXAM algorithm was developed, said: "Usually in AI development, when you create an algorithm on one hospital’s data, it doesn’t work well at any other hospital. By developing the EXAM moel using federated learning and objective, multimodal data from different continents, we were able to build a generalizable model that can help frontline physicians worldwide."

Bringing together collaborators across North and South America, Europe and Asia, the EXAM study took just two weeks of AI ‘learning’ to achieve high-quality predictions.

"Federated Learning allowed researchers to collaborate and set a new standard for what we can do globally, using the power of AI," said Dr Mona G Flores, Global Head for Medical AI at NVIDIA. "This will advance AI not just for healthcare but across all industries looking to build robust models without sacrificing privacy."

The outcomes of around 10,000 COVID patients from across the world were analysed in the study, including 250 who came to Addenbrooke's Hospital in the first wave of the pandemic in March/April 2020.

The research was supported by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (BRC).

Work on the EXAM model has continued. Mass General Brigham and the NIHR Cambridge BRC are working with NVIDIA Inception startup Rhino Health, cofounded by Dr Dayan, to run prospective studies using EXAM.

Professor Gilbert added: "Creating software to match the performance of our best radiologists is complex, but a truly transformative aspiration. The more we can securely integrate data from different sources using federated learning and collaboration, and have the space needed to innovate, the faster academics can make those transformative goals a reality."

Dayan, I., Roth, H.R., Zhong, A. et al.
Federated learning for predicting clinical outcomes in patients with COVID-19.
Nat Med, 2021. doi: 10.1038/s41591-021-01506-3

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...