Scientists Develop AI to Predict the Success of Startup Companies

A study in which machine-learning models were trained to assess over 1 million companies has shown that artificial intelligence (AI) can accurately determine whether a startup firm will fail or become successful. The outcome is a tool that has the potential to help investors identify the next unicorn.

It is well known that around 90% of startups are unsuccessful: between 10% and 22% fail within their first year, and this presents a significant risk to Venture Capitalists and other investors in early-stage companies. In a bid to identify which companies are more likely to succeed, researchers have developed machine-learning models trained on the historical performance of over 1 million companies. Their results, published in KeAi’s The Journal of Finance and Data Science, show that these models can predict the outcome of a company with up to 90% accuracy. This means that potentially 9 out of 10 companies are correctly assessed.

"This research shows how ensembles of non-linear machine-learning models applied to big data have huge potential to map large feature sets to business outcomes, something that is unachievable with traditional linear regression models," explains co-author Sanjiv Das, Professor of Finance and Data Science at Santa Clara University's Leavey School of Business in the US.

The authors developed a novel ensemble of models in which the combined contribution of the models outweighs the predictive potential of each one alone. Each model classifies a company, placing it in one of several success categories or a failure category with a specific probability. For example, a company might be very likely to succeed if the ensemble says it has a 75% probability of being in the IPO (listed on the stock exchange) or 'acquired by another company' category, while only 25% of its prediction would fall into the failed category.

The researchers trained the models on data sourced from Crunchbase, a crowd-sourced platform containing detailed information on many companies. They married the Crunchbase observations with patent data from the USPTO (United States Patent and Trademark Office). Given the crowd-sourced nature of Crunchbase, it was no surprise to learn that some companies’ entries miss information. This observation inspired the authors to measure the amount of information missing for each company and use this value as an input to the model. This observation turned out to be one of the most critical features in determining whether a company would be acquired or otherwise fail.

Lead author Greg Ross of Venhound Inc. notes that the ensemble of models, along with novel data features, "generates a level of accuracy, precision and recall that exceeds other similar studies. Investors can use this to quickly evaluate prospects, raise potential red flags and make more informed decisions on the composition of their portfolios."

Greg Ross, Sanjiv Das, Daniel Sciro, Hussain Raza.
CapitalVX: A machine learning model for startup selection and exit prediction.
The Journal of Finance and Data Science, 2021. 10.1016/j.jfds.2021.04.001

Most Popular Now

Two Leading CIOs Join the Highland Marke…

Two of the NHS' most dynamic chief information officers have joined Highland Marketing’s advisory board of NHS IT professionals and health tech industry experts. Ian Hogan, a CIO at the Northern...

Using Technology to Support Primary Care

Opinion Article by Paul Bensley, Managing Director of Primary Care Cloud Telephony Specialist X-on. It is good to see the publication of this strategy [A plan for digital health and social...

Building the Right Foundations to Delive…

Opinion Article by Gary Birks, Gary Birks, General Manager, UK and Ireland, Orion Health. The latest strategy for health and care IT looks to build on what has been achieved over...

Teaching AI to Ask Clinical Questions

Physicians often query a patient's electronic health record for information that helps them make treatment decisions, but the cumbersome nature of these records hampers the process. Research has shown that...

Virtual Reality App Trial Shown to Reduc…

Results from a University of Otago, Christchurch trial suggest fresh hope for the estimated one-in-twelve people worldwide suffering from a fear of flying, needles, heights, spiders and dogs. The trial, led...

MIT Engineers Develop Stickers that can …

Ultrasound imaging is a safe and noninvasive window into the body’s workings, providing clinicians with live images of a patient’s internal organs. To capture these images, trained technicians manipulate ultrasound...

AI Analyses Neuron Changes to Detect whe…

A research group from Nagoya University in Japan has developed an artificial intelligence (AI) for analyzing cell images that uses machine learning to predict the therapeutic effect of drugs. Called...

Patient Deterioration Predictor could Su…

An artificial intelligence-driven device that works to detect and predict hemodynamic instability may provide a more accurate picture of patient deterioration than traditional vital sign measurements, a Michigan Medicine study...

Interoperability with Open Standards: Le…

Opinion Article by Vivek Krishnan, CTO, Alcidion Group. The future of healthcare systems lies in open standards that free data from traditional, stand-alone silos and make it available to the many...

Advancing Dynamic Brain Imaging with AI

MRI, electroencephalography (EEG) and magnetoencephalography have long served as the tools to study brain activity, but new research from Carnegie Mellon University introduces a novel, AI-based dynamic brain imaging technology...

Open Call HORIZON-EIC-2022-PATHFINDERCHA…

Current technologies for digital data storage are hitting sustainability limits in terms of energy consumption and their use of rare and toxic materials. Moreover, data integrity when using those technologies...

NHS Trust Dramatically Reduces Acute Kid…

A condition linked to thousands of UK deaths has been significantly reduced by healthcare professionals at County Durham and Darlington NHS Foundation Trust, with the help of a new care...