AI Algorithm Solves Structural Biology Challenges

Determining the 3D shapes of biological molecules is one of the hardest problems in modern biology and medical discovery. Companies and research institutions often spend millions of dollars to determine a molecular structure - and even such massive efforts are frequently unsuccessful.

Using clever, new machine learning techniques, Stanford University PhD students Stephan Eismann and Raphael Townshend, under the guidance of Ron Dror, associate professor of computer science, have developed an approach that overcomes this problem by predicting accurate structures computationally.

Most notably, their approach succeeds even when learning from only a few known structures, making it applicable to the types of molecules whose structures are most difficult to determine experimentally.

Their work is demonstrated in two papers detailing applications for RNA molecules and multi-protein complexes, published in Science on Aug. 27, 2021, and in Proteins in December 2020, respectively. The paper in Science is a collaboration with the Stanford laboratory of Rhiju Das, associate professor of biochemistry.

"Structural biology, which is the study of the shapes of molecules, has this mantra that structure determines function," said Townshend.

The algorithm designed by the researchers predicts accurate molecular structures and, in doing so, can allow scientists to explain how different molecules work, with applications ranging from fundamental biological research to informed drug design practices.

"Proteins are molecular machines that perform all sorts of functions. To execute their functions, proteins often bind to other proteins," said Eismann. "If you know that a pair of proteins is implicated in a disease and you know how they interact in 3D, you can try to target this interaction very specifically with a drug."

Eismann and Townshend are co-lead authors of the Science paper with Stanford postdoctoral scholar Andrew Watkins of the Das lab, and also co-lead authors of the Proteins paper with former Stanford PhD student Nathaniel Thomas.

Designing the algorithm

Instead of specifying what makes a structural prediction more or less accurate, the researchers let the algorithm discover these molecular features for itself. They did this because they found that the conventional technique of providing such knowledge can sway an algorithm in favor of certain features, thus preventing it from finding other informative features.

"The problem with these hand-crafted features in an algorithm is that the algorithm becomes biased towards what the person who picks these features thinks is important, and you might miss some information that you would need to do better," said Eismann.

"The network learned to find fundamental concepts that are key to molecular structure formation, but without explicitly being told to," said Townshend. "The exciting aspect is that the algorithm has clearly recovered things that we knew were important, but it has also recovered characteristics that we didn’t know about before."

Having shown success with proteins, the researchers next applied their algorithm to another class of important biological molecules, RNAs. They tested their algorithm in a series of “RNA Puzzles” from a long-standing competition in their field, and in every case, the tool outperformed all the other puzzle participants and did so without being designed specifically for RNA structures.

Broader applications

The researchers are excited to see where else their approach can be applied, having already had success with protein complexes and RNA molecules.

"Most of the dramatic recent advances in machine learning have required a tremendous amount of data for training. The fact that this method succeeds given very little training data suggests that related methods could address unsolved problems in many fields where data is scarce," said Dror, who is senior author of the Proteins paper and, with Das, co-senior author of the Science paper.

Specifically for structural biology, the team says that they’re only just scratching the surface in terms of scientific progress to be made.

"Once you have this fundamental technology, then you’re increasing your level of understanding another step and can start asking the next set of questions," said Townshend. "For example, you can start designing new molecules and medicines with this kind of information, which is an area that people are very excited about."

Raphael J L Townshend, Stephan Eismann, Andrew M Watkins, Ramya Rangan, Maria Karelina, Rhiju Das, Ron O Dror.
Geometric deep learning of RNA structure.
Science, 2021. doi: 10.1126/science.abe5650

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...