Discrepancy Between What Symptoms Patients Report, What Appears in Electronic Medical Record

Researchers found significant inconsistencies between what symptoms patients at ophthalmology clinics reported on a questionnaire and documentation in the electronic medical record, according to a study published online by JAMA Ophthalmology. The percentage of office-based physicians using any electronic medical record (EMR) increased from 18 percent in 2001 to 83 percent in 2014. Accurate documentation of patient symptoms in the EMR is important for high-quality patient care. Maria A. Woodward, M.D., M.S., of the University of Michigan Medical School, Ann Arbor, and colleagues examined inconsistencies between patient self-report on an Eye Symptom Questionnaire (ESQ) and documentation in the EMR. The study included 162 patients seen at ophthalmology and cornea clinics at an academic institution.

The researchers found that at the participant level, 34 percent had different reporting of blurry vision between the ESQ and EMR. Likewise, documentation was not in agreement for reporting glare (48 percent), pain or discomfort (27 percent), and redness (25 percent). Discordance of symptom reporting was more frequently characterized by positive reporting on the ESQ and lack of documentation in the EMR. Return visits at which the patient reported blurry vision on the ESQ had increased odds of not reporting the symptom in the EMR compared with new visits.

"We found significant inconsistencies between symptom self-report on an ESQ and documentation in the EMR, with a bias toward reporting more symptoms via self-report. If the EMR lacks relevant symptom information, it has implications for patient care, including communication errors and poor representation of the patient's reported problems. The inconsistencies imply caution for the use of EMR data in research studies. Future work should further examine why information is inconsistently reported. Perhaps the implementation of self-report questionnaires for symptoms in the clinical setting will mitigate the limitations of the EMR and improve the quality of documentation," the authors write.

Valikodath NG, Newman-Casey PA, Lee PP, Musch DC, Niziol LM, Woodward MA.
Agreement of Ocular Symptom Reporting Between Patient-Reported Outcomes and Medical Records.
JAMA Ophthalmol. January 26, 2017. doi: 10.1001/jamaophthalmol.2016.5551.

Most Popular Now

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...