The Virtual Human Healthcare Model

A revolution in healthcare treatment and diagnosis may be imminent with a pan-European personalised healthcare project, the Virtual Physiological Human (VPH), a Network of Excellence (NoE). Funded with EUR 72 million under the Information and communication technologies Theme of the Seventh Framework Programme (FP7), the VPH aims to create an entire framework to deliver personalised patient computer models for the predictive healthcare of the future. Success could significantly limit the need for animal testing and patient drug trials.

A total of 13 institutions from 7 countries are involved in the VPH network. The partners hope that once their 'personalised healthcare framework' has been created, a wide range of doctors, scientists and researchers will be able to virtually investigate the human body as a single complex organism.

The VPH project will also create a constantly expanding knowledge database, which will be used to develop better patient diagnosis and treatment.

A postgraduate VPH training programme at the University of Nottingham in the UK will help scientists from diverse disciplines to carry out collaborative studies across the EU. Mathematicians and medical researchers who use mathematical modelling will work together to find solutions to complex biomedical problems, for example. Researchers from academia and industry will meet this week to present technical problems relating to regenerative medicine, particularly those involving epithelial cells in the skin, bladder, lungs, heart and breast.

It is hoped that the study groups will develop new theoretical illness models that may eventually form the basis for new research projects.

Dr Bindi Brook of the University of Nottingham's School of Mathematical Sciences said, "This study group is one of the prototypes for the sort of collaborative study which will be a key feature of our new VPH training programme. The course will allow postgraduates to train within the VPH network of European universities and, crucially, to access and contribute to a virtual VPH academy online."

The VPH project may revolutionise medical healthcare in the future. Employing emerging technologies such as genomics means that researchers in all areas can make use of enormous amounts of crucial and detailed physiological data. At the same time, advances in computer and information technology will make it easier for this information to be used to create genetic profiles of patients. It is hoped that over the next 10 years these advances will include treatments for both cancer and HIV/AIDS.

For further information, please visit:
http://www.vph-noe.eu

Copyright ©European Communities, 2009
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...