HeartCycle

HeartCycle consortium, comprising 18 research, academic, industrial and medical organizations from 9 different European countries and China, will work to improve the quality of life for coronary heart disease and heart failure patients by monitoring their condition and involving them in the daily management of their disease. The consortium will also develop mechanisms to automatically report relevant monitoring data back to clinicians so that they can prescribe personalized therapies and lifestyle recommendations.

Compliance to prescribed therapies is a common problem associated with long-term treatment, and will become even more problematic as the European population ages and chronic disease becomes more prevalent. There is strong evidence that increasing the level of patient compliance may have a far greater impact on the health of the population than improvements in specific medical treatments. The HeartCycle project intends to tackle this in two ways.

Firstly by creating a 'patient loop' that gives patients continuous feedback on their state of health, their progress towards achieving health status milestones, plus motivational tips and suggestions for a healthy lifestyle and diet. In the course of the project it will be investigated whether such measures will improve the adherence to prescribed therapies. Monitoring each patient's condition will be achieved using a combination of unobtrusive bio-sensors built into the patient's clothing or bed sheets and home appliances such as weighing scales and blood pressure monitors. Sensing of an individual patient's physical exertion, body orientation and ambient environment will provide additional information so that the system can put the monitoring data into context.

Secondly by enabling a 'professional loop' in which relevant data on a patient’s state of health and therapy adherence is automatically communicated to a hospital information system. This professional loop will allow doctors to monitor each patient's condition and therapy response in order to create optimized individual care plans, as well as allowing them to identify deterioration or sudden cardiac events that require immediate remedial action.

For further information, please visit:
http://www.heartcycle.eu

Project co-ordinator:
Philips Research

Partners:

  • Aristotle University of Thessaloniki (Greece);
  • Clothing Plus Oy (Finland);
  • CSEM Centre Suisse D'electronique Et De Microtechnique Sa (Switzerland);
  • Empirica Gesellschaft für Kommunikations und Technologieforschung mbH (Germany);
  • Faculdade Ciencias e Tecnologia da Universidade de Coimbra (Portugal);
  • Fundación Vodafone España (Spain);
  • Hospital Universitario Clínico San Carlos (Spain);
  • Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (Spain);
  • Medtronic Ibérica SA (Spain);
  • Philips Electronics Nederland B.V. (The Netherlands);
  • Philips Research (Germany);
  • Politecnico Di Milano - Dipartimento di Bioingegneria (Italy);
  • Rheinisch Westfälische Technische Hochschule (Germany);
  • T-Systems ITC Iberia SA (Spain);
  • Universidad Politécnica de Madrid (Spain);
  • Chinese University of Hong Kong (China);
  • University of Hull (United Kingdom);
  • Valtion Teknillinen Tutkimuskeskus (Finland).

Timetable: from 03/2008 – to 02/2012

Total cost: € 21.985.444

EC funding: € 14.100.000

Programme Acronym: FP7-ICT

Subprogramme Area: Personal health systems for monitoring and point-of-care diagnostics

Contract type: Collaborative project (generic)


Related news articles:

Most Popular Now

Mobile Phone Data Helps Track Pathogen S…

A new way to map the spread and evolution of pathogens, and their responses to vaccines and antibiotics, will provide key insights to help predict and prevent future outbreaks. The...

AI Model to Improve Patient Response to …

A new artificial intelligence (AI) tool that can help to select the most suitable treatment for cancer patients has been developed by researchers at The Australian National University (ANU). DeepPT, developed...

Can AI Tell you if You Have Osteoporosis…

Osteoporosis is so difficult to detect in early stage it’s called the "silent disease." What if artificial intelligence could help predict a patient’s chances of having the bone-loss disease before...

Study Reveals Why AI Models that Analyze…

Artificial intelligence (AI) models often play a role in medical diagnoses, especially when it comes to analyzing images such as X-rays. However, studies have found that these models don’t always...

Think You're Funny? ChatGPT might b…

A study comparing jokes by people versus those told by ChatGPT shows that humans need to work on their material. The research team behind the study published on Wednesday, July 3...

Innovative, Highly Accurate AI Model can…

If there is one medical exam that everyone in the world has taken, it's a chest x-ray. Clinicians can use radiographs to tell if someone has tuberculosis, lung cancer, or...

New AI Approach Optimizes Antibody Drugs

Proteins have evolved to excel at everything from contracting muscles to digesting food to recognizing viruses. To engineer better proteins, including antibodies, scientists often iteratively mutate the amino acids -...

AI Speeds Up Heart Scans, Saving Doctors…

Researchers have developed a groundbreaking method for analysing heart MRI scans with the help of artificial intelligence (AI), which could save valuable NHS time and resources, as well as improve...

Researchers Customize AI Tools for Digit…

Scientists from Weill Cornell Medicine and the Dana-Farber Cancer Institute in Boston have developed and tested new artificial intelligence (AI) tools tailored to digital pathology - a rapidly growing field...

Young People Believe that AI is a Valuab…

Children and young people are generally positive about artificial intelligence (AI) and think it should be used in modern healthcare, finds the first-of-its-kind survey led by UCL and Great Ormond...