PredictAD

Dementia causes long and oppressive suffering to patients and their relatives and imposes enormous costs on society. About 25 million people suffered from dementia in 2000. As a 4-fold increase of this number is expected by 2050, dementia is one main health issue of the next decades.

Alzheimer's disease (AD) covers 60-70% of all dementia cases. No cure for AD exists, and effective and reliable early diagnostic techniques are lacking. Early diagnosis and progress monitoring of AD is a central part of treatment once future drugs and prevention strategies become available. There is a strong indication that different biomarkers provide a reliable and early indication of AD prior to its major clinical signs. However, optimal early diagnosis requires information from a combination of different biomarkers to be used in a clinically useful way.

The objective of PredictAD is 1) to find the best combination of biomarkers for AD diagnostics from heterogeneous data (imaging, electrophysiology, molecular level, clinical tests, demographics) and 2) to develop clinically useful tools integrating the optimal biomarker results. Comprehensive biomarker discovery techniques and rigorous statistical models will be developed using the consortium's large databases. The accuracy and usability of models and tool will be clinically evaluated. The cost-effectiveness of heterogeneous data in AD diagnostic procedures will be studied.

By reaching its objectives, PredictAD provides an efficient and reliable solution for early AD diagnosis in clinical practice. The impacts on patients, their relatives and society are reduced suffering and costs. As we are living in the dawn of an era of new drugs and prevention strategies combined with increasing AD prevalence, now is the time to exploit the vast potential of information hiding in heterogeneous patient databases. PredictAD combines the best forces in Europe to solve the AD diagnostics problem, and hence strengthens EU leadership on the market.

For further information, please visit:
http://www.predictad.eu

Project co-ordinator:
Valtion teknillinen tutkimuskeskus VTT

Partners:

  • Nexstim Oy
  • Imperial College of Science, Technology and Medicine
  • Rigshospitalet
  • Kuopion yliopisto
  • Università degli Studi di Milano
  • GE Healthcare Ltd.
  • Uppsala universitet

Timetable: from 06/2008 – to 05/2011

Total cost: € 3.981.565

EC funding: € 2.891.526

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Collective Intelligence can Help Reduce …

An estimated 250,000 people die from preventable medical errors in the U.S. each year. Many of these errors originate during the diagnostic process. A powerful way to increase diagnostic accuracy...

Software Created from 'Building Blo…

New 'building-block' approaches to the creation of digital tools which include data and artificial intelligence (AI) could play a key role in improving the running of hospital wards and disease...

How could Technology Better Support Pati…

The NHS exists to serve patients. But more could be done to make their experience a key focus when it comes to technology adoption, senior NHS delegates told a recent...

"Showtime" for Digital Health …

13 - 16 November 2023, Düsseldorf, Germany. A hundred start-ups and more than 120 high-calibre professional speakers: These are just the "naked" facts which this year's MEDICA CONNECTED HEALTHCARE FORUM will...

Artificial Intelligence: Unexpected Resu…

Artificial intelligence (AI) is on the rise. Until now, AI applications generally have "black box" character: How AI arrives at its results remains hidden. Prof. Dr. Jürgen Bajorath, a cheminformatics...

Philips Program Developing AI-Powered Ul…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it has received a second round of funding from the Bill & Melinda Gates Foundation to...

CGM Continues to Drive Digitization in H…

CompuGroup Medical SE & Co. KGaA (CGM), one of the world's leading e-health providers, successfully progressed the digitization in healthcare during the first three quarters in 2023. CGM supports physicians...

Wolverhampton's New 10-Year EPR Dea…

The Royal Wolverhampton NHS Trust (RWT) has just signed a 10-year contract with System C for an integrated electronic patient record (EPR) system, which will replace the trust's in-house built...

Printed Robots with Bones, Ligaments, an…

3D printing is advancing rapidly, and the range of materials that can be used has expanded considerably. While the technology was previously limited to fast-curing plastics, it has now been...

Orchestrating the New World of AI in Hea…

Orion Health's UK and Ireland Customer Conference 2023 focused on the future potential and immediate, practical application of AI to healthcare - and gave delegates a first look at the...

Researchers Take New AI Approach to Anal…

Researchers at Karolinska Institutet and SciLifeLab in Sweden have combined artificial intelligence (AI) techniques used in satellite imaging and community ecology to interpret large amounts of data from tumour tissue...

AI identifies Non-Smokers at High Risk f…

Using a routine chest X-ray image, an artificial intelligence (AI) tool can identify non-smokers who are at high risk for lung cancer, according to a study being presented next week...