Open Call SC1-DTH-01-2019: Big Data and Artificial Intelligence for Monitoring Health Status and Quality of Life after the Cancer Treatment

European CommissionCurrently available methods and strategies for diagnosis and treatment of cancer help clinicians continuously improve quality of care and prevent cancer deaths in the population. Accurate risk assessment, availability of genetic tests, timely diagnosis and effective treatment has created the impression of cancer being a chronic disease that can be cured. However, often rather aggressive treatment, psychological stress (anxiety and depression) can cause physical and psychological problems that may cause long-term after-cure consequences such as similar or other types of cancer, other types of (chronic) diseases and affect the quality of life of a patient. Therefore, the importance of addressing and, if possible, preventing long-term effects of cancer treatment is growing. In addition to patient-reported outcomes such as functional status, symptoms intensity and frequency, multiple domains of well-being and overall satisfaction with life, the use of big data can bring valuable information for monitoring health status and quality of life after the cancer treatment. Big Data can provide new opportunities to define statistical and clinical significance, but present also challenges as it requires specific analytical approaches.

Scope

Proposals should focus and deliver on how to better acquire, manage, share, model, process and exploit big data using, if appropriate, high performance computing to effectively monitor health status of individual patients, provide overall actionable insights at the point of care and improve quality of life after the cancer treatment. Relevant solutions include for example systems for determining and monitoring (taking also in account gender differences) the combined effects of cancer treatment, environment, lifestyle and genetics on the quality of life, enabling early identification of effects that can cause development of new medical conditions and/or impair the quality of life. Proposals preferably address relevant health economic issues, use patient reported outcome and experience measures (PROMs and PREMs) and take into account the relevant social aspects of health status and quality of life after cancer treatment. Integrated solutions should include suitable approaches towards security and privacy issues.

Information can be collected from traditional sources of health data (cohorts, comprehensive electronic health records or clinical registries, incl. genetic data, validated biomarkers for remission), from new sources of health data (mobile health apps and wearables) and from sources that are usually created for other purposes such as environmental data.

It is important to assure ethical aspects of data, confidentiality, and anonymity of data transfer and engagement of those who collect / code such data in its analysis and interpretation, in order to avoid misinterpretation and inappropriate conclusions by using proper annotation methodologies of the data. Involvement of those who work within healthcare systems, patients, family and relatives, and the general public is needed.

The Commission considers that proposals requesting a contribution from the EU of between EUR 3 and 5 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts. Participation of SMEs is encouraged.

Expected Impact

The proposal should provide appropriate indicators to measure its progress and specific impact in the following areas:
  • Mapped comprehensive big data in a reachable and manageable way by applying principles for sharing and reusability, creating a network of knowledge by linking translation tools, heterogeneous data sources and biomedical texts for monitoring health status and quality of life after the cancer treatment;
  • Emerging data driven analytics and advanced simulation methods to study causal mechanisms and improve forecasts of ill-health, identification of disease trajectories and relapse;
  • Better and faster means of high quality response to prevent or timely address development of new medical conditions and/or improve the quality of life;
  • Better knowledge for improved patient counselling as well as to improve follow-up of patients;
  • Novel information on health maintenance, onset and course of medical conditions with a view to optimise prevention and treatment;
  • Evidence base for the development of policy strategies for prevention, early diagnosis, therapies as well as addressing health inequalities, support to patient registries at national level;
  • Improved quality of life after cancer treatment, strengthening personal confidence and enhancing employability;
  • Preventative strategies are established which have a real effect of reducing the occurrence of health disorders and co-morbidities associated with cancer treatment.

Planned opening date: 16 October 2018

Deadline: 24 April 2019 17:00:00

Deadline Model: single-stage

Type of action: RIA Research and Innovation action

For topic conditions, documents and submission service, please visit:
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/sc1-dth-01-2019.html

PS: Find your partners or consortia preparing a project proposal
If you need help to identify a potential partner with particular competences, facilities or experience, please join and explore (HEALTH IT) SPACE www.healthitspace.eu.

Most Popular Now

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...