Maternity Tech Launched to Help NHS Measure and Enhance Safety

C2-AiHealth tech provider C2-Ai has formally launched a new 'observatory' system to help hospitals gain a better understanding of risks, outcomes and safety within maternity and neonatal services.

Announced at the annual NHS ConfedExpo, the new system will equip hospitals and frontline teams with a detailed picture of individual health trajectories for women, and the performance of maternity units.

Known as the 'Maternity & Neonatal Observatory', the system is based on a highly regarded AI-backed risk methodology already used in the NHS, and in top hospitals around the world, to measure safety and performance, highlight hidden risks in healthcare, and safely manage waiting lists.

By shining new light on outcomes for mothers and babies, it will help healthcare providers to proactively identify and address areas of concern early within maternity services, before they escalate or become systemic problems.

Frontline clinical teams will also be better informed about specific risks and care requirements for individual women, including any specialised support needed to ensure favourable outcomes.

Dr Mark Ratnarajah, a practising NHS paediatrician and UK managing director for C2-Ai, said: "Maternity services have come under close scrutiny in the public eye. By working closely with partners in the NHS, we will provide capabilities that can alert healthcare providers to challenges at the earliest of stages. And they will have new analysis to help them to demonstrate quality to regulators, maternity incentive schemes, and the outside world.

"Insights needed to achieve this can often be buried within data held in disparate places. We can now decode that complex clinical data, and unearth intelligence needed to support a learning environment. In addition to current evaluations of compliance with processes, services will have a new means to help them understand, interrogate, and enhance outcomes on an almost continuous basis."

Early adopters within the NHS are expected soon, with maternity teams in trusts across several regions having already provided positive feedback on the observatory's capabilities.

The system works by calculating and comparing in-detail observed outcomes for women and babies, in relation to expected outcomes for those individuals. Tailored for the acuity level of each maternity and neonatal service, the observatory uses AI and machine learning algorithms, widely proven in the NHS and internationally, to assess a total of 47 clinical factors. It takes into account case-mix adjusted maternal and neonatal clinical outcomes, impacts from social determinants of health such as ethnicity and deprivation, and comorbidities.

Maternity services are then able to visualise in granular detail where they may need to focus attention. The same system then allows providers to track if policy changes and quality improvement measures put in place have led to improvements.

Healthcare providers will be better equipped to identify patterns - for example the prevalence of sudden or unexpected increases in complications. They will be able to carry out deeper root cause investigations into adverse events. And they will be able to use insights to support accurate reporting on performance to regulators, and NHS Resolution’s Maternity Incentive Scheme.

Significant gains are also expected in tackling maternal healthcare inequalities. Research released in 2022 revealed maternal mortality rates to be four times higher for women from black ethnic backgrounds, compared to white women, and nearly twice as high for Asian women. Women residing in the most deprived areas also experienced higher maternal mortality rates. The findings were published in a report from Birthrights (1), which also examined inequalities in risks facing babies, including stillbirth, injuries, and brain damage.

Combined analysis of community care, and maternity and neonatal outcomes, made possible through the Maternity & Neonatal Observatory, is expected to support healthcare providers’ ability to measure progress in tackling such inequalities, including in NHS England’s Core20PLUS5 programme on narrowing healthcare inequalities.

Stephen Mackenney, CEO for C2-Ai, and a former head of quality, safety and clinical governance in the Department of Health, said: "New insights available through the Maternity & Neonatal Observatory, can help services to react to immediate challenges, and to proactively forward plan. This has the potential to support strategies at national, regional and local level, to help healthcare providers to focus training, to personalise care for individual women, to plan resources across healthcare systems, and to develop policy, based on evidence of what delivers the best outcomes for people receiving care.

"Healthcare providers are working tirelessly to improve quality and safety. I look forward to seeing our technology support them in their mission to enhance care in the maternal services so many people rely on."

About C2-Ai

C2-Ai is a trusted NHS digital partner. The company has provided national support and its technology is used in a wide number of NHS trusts and across 11 countries.

C2-Ai provides an AI-backed suite of hospital care quality/efficiency improvement tools developed from more than 30 years of research, ten years of development and the world’s largest and geographically broadest patient data set (from 46 countries). In the UK these systems have a track record for delivering demonstrable improvements in care.

1. For further information on research into inequalities please see Systemic Racism, Not Broken Bodies, from Birthrights at https://birthrights.org.uk/campaigns-research/racial-injustice/

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...