Abbott Announces New Data that Shows Artificial Intelligence Technology can Help Doctors Better Determine which Patients are Having a Heart Attack

AbbottAbbott (NYSE: ABT) announced that new research, published in the journal Circulation, found its algorithm could help doctors in hospital emergency rooms more accurately determine if someone is having a heart attack or not, so that they can receive faster treatments or be safely discharged. (1)

In this study, researchers from the U.S., Germany, U.K., Switzerland, Australia and New Zealand looked at more than 11,000 patients to determine if Abbott's technology developed using artificial intelligence (AI) could provide a faster, more accurate determination that someone is having a heart attack or not. The study found that the algorithm provided doctors a more comprehensive analysis of the probability that a patient was having a heart attack or not, particularly for those who entered the hospital within the first three hours of when their symptoms started.

"With machine learning technology, you can go from a one-size-fits-all approach for diagnosing heart attacks to an individualized and more precise risk assessment that looks at how all the variables interact at that moment in time," said Fred Apple, Ph.D., Hennepin HealthCare/ Hennepin County Medical Center, professor of Laboratory Medicine and Pathology at the University of Minnesota, and one of the study authors. "This could give doctors in the ER more personalized, timely and accurate information to determine if their patient is having a heart attack or not."

Removing the barriers for determining the presence of a heart attack

A team of physicians and statisticians at Abbott developed the algorithm* using AI tools to analyze extensive data sets and identify the variables most predictive for determining a cardiac event, such as age, sex and a person's specific troponin levels (using a high sensitivity troponin-I blood test**) and blood sample timing.

Today, when a person enters the emergency room with symptoms of a heart attack, doctors often use a clinical assessment, an electrocardiogram (EKG) and troponin blood tests at set intervals to determine if the patient is having a heart attack or not. The algorithm is designed to help address two barriers that exist today for doctors looking for more individualized information when diagnosing heart attacks:

  • International guidelines for using high sensitive troponin tests currently do not always account for personal factors, such as age and sex, which could impact test results. For instance, women may not produce as much of the troponin protein as men and their heart attacks could go undiagnosed.
  • The guidelines also recommend that doctors carry out troponin testing at fixed times over a period of up to 12 hours. However, these time periods do not take into consideration a person's age or sex, and puts a patient into a one-size-fits-all algorithm, rather than having an algorithm that accounts for factors specific to each person.

The algorithm used in the study takes into consideration the patient's age, sex and the dynamics of the troponin blood test results over time. Researchers found that when this information is combined through the power of computation, the algorithm has the potential to give doctors more confidence in the results to help rule out a heart attack and safely discharge that person or diagnose that a heart attack has occurred.

"As doctors are bombarded with data and information, this new algorithm takes several of these variables and uses computational power to more accurately provide a probability of that person having a heart attack," said Agim Beshiri, M.D., one of the inventors of the algorithm and senior medical director, global medical and scientific affairs, Diagnostics, Abbott. "In the future, you could imagine using this technology to develop algorithms that help doctors not only better determine if their patient is having a heart attack or not, but potentially before a heart attack occurs."

Abbott is continuously utilizing new technologies, such as AI and machine learning, to create innovative solutions in healthcare.

* The algorithm used is for research purposes only and is not commercially available.
** Abbott's High Sensitive Troponin-I test is not commercially available in the U.S.

About Abbott

Abbott is a global healthcare leader that helps people live more fully at all stages of life. Our portfolio of life-changing technologies spans the spectrum of healthcare, with leading businesses and products in diagnostics, medical devices, nutritionals and branded generic medicines. Our 103,000 colleagues serve people in more than 160 countries.

1. Than, MP et al. Circulation. 2019; published online Sept 10. doi: 10.1161/CIRCULATIONAHA.119.041980

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...