Abbott Announces New Data that Shows Artificial Intelligence Technology can Help Doctors Better Determine which Patients are Having a Heart Attack

AbbottAbbott (NYSE: ABT) announced that new research, published in the journal Circulation, found its algorithm could help doctors in hospital emergency rooms more accurately determine if someone is having a heart attack or not, so that they can receive faster treatments or be safely discharged. (1)

In this study, researchers from the U.S., Germany, U.K., Switzerland, Australia and New Zealand looked at more than 11,000 patients to determine if Abbott's technology developed using artificial intelligence (AI) could provide a faster, more accurate determination that someone is having a heart attack or not. The study found that the algorithm provided doctors a more comprehensive analysis of the probability that a patient was having a heart attack or not, particularly for those who entered the hospital within the first three hours of when their symptoms started.

"With machine learning technology, you can go from a one-size-fits-all approach for diagnosing heart attacks to an individualized and more precise risk assessment that looks at how all the variables interact at that moment in time," said Fred Apple, Ph.D., Hennepin HealthCare/ Hennepin County Medical Center, professor of Laboratory Medicine and Pathology at the University of Minnesota, and one of the study authors. "This could give doctors in the ER more personalized, timely and accurate information to determine if their patient is having a heart attack or not."

Removing the barriers for determining the presence of a heart attack

A team of physicians and statisticians at Abbott developed the algorithm* using AI tools to analyze extensive data sets and identify the variables most predictive for determining a cardiac event, such as age, sex and a person's specific troponin levels (using a high sensitivity troponin-I blood test**) and blood sample timing.

Today, when a person enters the emergency room with symptoms of a heart attack, doctors often use a clinical assessment, an electrocardiogram (EKG) and troponin blood tests at set intervals to determine if the patient is having a heart attack or not. The algorithm is designed to help address two barriers that exist today for doctors looking for more individualized information when diagnosing heart attacks:

  • International guidelines for using high sensitive troponin tests currently do not always account for personal factors, such as age and sex, which could impact test results. For instance, women may not produce as much of the troponin protein as men and their heart attacks could go undiagnosed.
  • The guidelines also recommend that doctors carry out troponin testing at fixed times over a period of up to 12 hours. However, these time periods do not take into consideration a person's age or sex, and puts a patient into a one-size-fits-all algorithm, rather than having an algorithm that accounts for factors specific to each person.

The algorithm used in the study takes into consideration the patient's age, sex and the dynamics of the troponin blood test results over time. Researchers found that when this information is combined through the power of computation, the algorithm has the potential to give doctors more confidence in the results to help rule out a heart attack and safely discharge that person or diagnose that a heart attack has occurred.

"As doctors are bombarded with data and information, this new algorithm takes several of these variables and uses computational power to more accurately provide a probability of that person having a heart attack," said Agim Beshiri, M.D., one of the inventors of the algorithm and senior medical director, global medical and scientific affairs, Diagnostics, Abbott. "In the future, you could imagine using this technology to develop algorithms that help doctors not only better determine if their patient is having a heart attack or not, but potentially before a heart attack occurs."

Abbott is continuously utilizing new technologies, such as AI and machine learning, to create innovative solutions in healthcare.

* The algorithm used is for research purposes only and is not commercially available.
** Abbott's High Sensitive Troponin-I test is not commercially available in the U.S.

About Abbott

Abbott is a global healthcare leader that helps people live more fully at all stages of life. Our portfolio of life-changing technologies spans the spectrum of healthcare, with leading businesses and products in diagnostics, medical devices, nutritionals and branded generic medicines. Our 103,000 colleagues serve people in more than 160 countries.

1. Than, MP et al. Circulation. 2019; published online Sept 10. doi: 10.1161/CIRCULATIONAHA.119.041980

Most Popular Now

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...