XENiOS® Will Seek Regulatory Approval for i-lung®

XENiOS®, a commercial-stage medical device company, announced today it expects to receive CE-marking for its i-lung® device within 18 months. XENIOS expects to launch i-lung® in 2017. Currently available devices lack durability and wearability. Additionally, the size of current systems restricts patient mobility and limits quality of life. i-lung represents an innovative and first-of-its-kind fully wearable artificial lung for long-term use in a hospital environment.

"The availability of i-lung will open the door to significant medical progress for respiratory support. For many patients in lung failure currently undergoing invasive mechanical ventilation, the use of i-lung is designed to avoid sedation and immobility, thus creating active, self-managed patients," said Georg Matheis, MD, Managing Director & Founder of XENIOS. "In addition, i-lung is designed to be used to bridge the waiting time for a donor organ (bridge-to-lung-transplant)."

"Of special note," added Juergen Boehm, MD, Managing Director of Xenios, "i-lung paves the way for XENiOS to continue development of a bioartificial lung for use by patients outside of a hospital environment analogous to current artificial heart protocols, which will represent a paradigm shift in the approach to long-term respiratory support."

i-lung is the result of the successful completion of the AmbuLung project, a three-year R&D consortium project funded by the European Union’s FP7 Program that developed the basis for i-lung, the world’s first-of-its-kind wearable artificial lung. In addition to XENiOS, the consortium included Fraunhofer IGB (Stuttgart, Germany); Imperial College of Science, Technology and Medicine (London, UK); and, the University of Florence (Italy).

"We are forever indebted to the vision and the work of Professor Dame Julia Polak, who passed away last year," said Dr. Matheis. "Julia and I co-founded the i-lung project, and because of her enormous contribution i-lung is now a reality, and a bioartificial next-gen of i-lung on the horizon." The author of some 1,000 original papers, 115 review articles and editor or author of 25 books, Julia Polak, MD, PhD, was one of the most widely cited researchers in her field, and had undergone a heart lung transplant. She served on several national and international tissue engineering and stem cell advisory panels, and was the European editor of the journal Tissue Engineering.

Funding for the commercialization of i-LUNG® has already been procured. XENIOS announced in September 2015 that it received an eight-figures cash infusion from existing investors, in part to fund CE-marking and launch of i-LUNG, led by ZFHN, one of the largest Single Family Offices in Germany investing in start-up companies.

About XENiOS®
XENiOS AG is a privately held medical technology company that is comprised of two product brands, novalung® and i–cor®, that run on a single XENiOS® console. The XENIOS platform is designed to provide at least four essential advantages with its minimally invasive lung and heart therapies: (1) patients are awake and mobile;(2) self-actuated patients facilitate improved outcomes; (3) there is no ventilator-associated lung injury or pneumonia; (4) additionally, the XENIOS platform maintains a physiologic natural pulse designed to protect the heart.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

NHS National Rehabilitation Centre to De…

The new NHS National Rehabilitation Centre will deploy technology to help patients to maintain their independence as they recover from life-changing injuries and illnesses and regain quality of life. Airwave Healthcare...

AI Finds Hundreds of Potential Antibioti…

Snake, scorpion, and spider venom are most frequently associated with poisonous bites, but with the help of artificial intelligence, they might be able to help fight antibiotic resistance, which contributes...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...

AI Tool Accurately Detects Tumor Locatio…

An AI model trained to detect abnormalities on breast MR images accurately depicted tumor locations and outperformed benchmark models when tested in three different groups, according to a study published...

AI can Accelerate Search for More Effect…

Scientists have used an AI model to reassess the results of a completed clinical trial for an Alzheimer’s disease drug. They found the drug slowed cognitive decline by 46% in...

AI Accurately Classifies Pancreatic Cyst…

Artificial intelligence (AI) models such as ChatGPT are designed to rapidly process data. Using the AI ChatGPT-4 platform to extract and analyze specific data points from the Magnetic Resonance Imaging...

Free AI Tools can Help Doctors Read Medi…

A new study from the University of Colorado Anschutz Medical Campus shows that free, open-source artificial intelligence (AI) tools can help doctors report medical scans just as well as more...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Autonomous AI Agents in Healthcare

The use of large language models (LLMs) and other forms of generative AI (GenAI) in healthcare has surged in recent years, and many of these technologies are already applied in...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...