No One-Size-Fits-All AI Approach Works for Prevention, Diagnosis or Treatment Using Precision Medicine

A Rutgers analysis of dozens of artificial intelligence (AI) software programs used in precision, or personalized, medicine to prevent, diagnose and treat disease found that no program exists that can be used for all treatments.

Precision medicine, a technology still in its infancy, is an approach to treatment that uses information about an individual's medical history and genetic profile and relates it to the information of many others to find patterns that can help prevent, diagnose or treat a disease. The AI-based approach rests on a high level of both computing power and machine-learning intelligence because of the enormous scope of medical and genetic information scoured and analyzed for patterns.

"Precision medicine is one of the most trending subjects in basic and medical science today," said Zeeshan Ahmed, an assistant professor of medicine at Rutgers Robert Wood Johnson Medical School who led the study, published in Briefings in Bioinformatics. "Major reasons include its potential to provide predictive diagnostics and personalized treatment to variable known and rare disorders. However, until now, there has been very little effort exerted in organizing and understanding the many computing approaches to this field. We want to pave the way for a new data-centric era of discovery in health care."

The comparative and systematic review, believed by the authors to be one of the first of its kind, identified 32 of the most prevalent precision medicine AI approaches used to study preventive treatments for a range of diseases, including obesity, Alzheimer's, inflammatory bowel disease, breast cancer and major depressive disorder. The bevy of AI approaches analyzed in the study - the researchers combed through five years of high-quality medical literature - suggest the field is advancing rapidly but is suffering from disorganization, Ahmed said.

In AI, software programs simulate human intelligence processes. In machine learning, a subcategory of AI, programs are designed to "learn" as they process more and more data, becoming ever more accurate at predicting outcomes. The effort rests on algorithms, step-by-step procedures for solving a problem or performing a computation.

Researchers such as Ahmed, who conducts studies on cardiovascular genomics at the Rutgers Institute for Health, Health Care Policy and Aging Research (IFH), are racing to collect and analyze complex biological data while also developing the computational systems that undergird the endeavor.

Because the use of genetics is "arguably the most data-rich and complex component of precision medicine," Ahmed said, the team focused especially on reviewing and comparing scientific objectives, methodologies, data sources, ethics and gaps in approaches used.

Those interested in precision medicine, he said, can look to the paper for guidance as to which AI programs may be best suited for their research.

To aid the advent of precision medicine, the study concluded that the scientific community needs to embrace several "grand challenges," from addressing general issues such as improved data standardization and enhanced protection of personal identifying information to more technical issues such as correcting for errors in genomic and clinical data.

"AI has the potential to play a vital role to achieve significant improvements in providing better individualized and population healthcare at lower costs," Ahmed said. "We need to strive to address possible challenges that continue to slow the advancements of this breakthrough treatment approach."

Other Rutgers researchers involved in the study included Sreya Vadapalli and Habiba Abdelhalim, research assistants at the IFH, and Saman Zeeshan, a bioinformatics research scientist and former postdoctoral research associate at the Rutgers Cancer Institute of New Jersey.

Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z.
Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine.
Brief Bioinform. 2022 May 21:bbac191. doi: 10.1093/bib/bbac191

Most Popular Now

West Midlands to Digitally Transform Can…

NHS patients throughout the West Midlands are to benefit from a digital pathology programme, designed to help reduce cancer backlogs, transform services, and improve the speed and accuracy of cancer...

AI Approach may Help Identify Melanoma S…

Most deaths from melanoma - the most lethal form of skin cancer - occur in patients who were initially diagnosed with early-stage melanoma and then later experienced a recurrence that...

Siemens Healthineers and University of M…

Siemens Healthineers and UHealth - University of Miami Health System - announced a Value Partnership(1) agreement. This strategic relationship will further technological advancement and standardization of equipment at the health...

Siemens Healthineers Splits Fast-Growing…

Siemens Healthineers is splitting its Asia Pacific operations into two to allow both China and the rest of the region to achieve their full potential. China, now its own region...

Philips Advances MR Radiotherapy Imaging…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced two new advances in MR-only workflows to advance head and neck cancer radiotherapy imaging and simulation. The...

AI Transforms Smartwatch ECG Signals int…

A study published in Nature Medicine reports the ability of a smartwatch ECG to accurately detect heart failure in nonclinical environments. Researchers at Mayo Clinic applied artificial intelligence (AI) to...

3D Protein Structure Predictions Made by…

In a living being, proteins make up roughly everything: from the molecular machines running every cell's metabolism, to the tip of your hair. Encoded in the DNA, a protein may...

Siemens Healthineers Presents Two Revolu…

7 Tesla (T) Magnetom Terra.X(1) will offer excellent imaging of even the smallest structures 3T Magnetom Cima.X(2) more than doubles the gradient amplitude(3) AI algorithms which can reduce scanning...

Integrating Digital Twins and Deep Learn…

Digital twins are virtual representations of devices and processes that capture the physical properties of the environment and operational algorithms/techniques in the context of medical devices and technologies. Digital twins...

Willingness to Use Video Telehealth Incr…

Americans' use and willingness to use video telehealth has increased since the beginning of the COVID-19 pandemic, rising most sharply among Black Americans and people with less education, according to...

New Group to Advance Digital Twins in He…

EDITH (Ecosystem for Digital Twins in Healthcare) Coordination and Support Action (CSA) - a group made up of numerous internationally renowned research institutions, professional associations, companies, and hospitals of excellence...

DMEA Call for Papers: Supporting Digital…

25 - 27 April 2023, Berlin, Germany. Health meets digitalisation: from 25 to 27 April 2023 at DMEA - Connecting Digital Health, all actors aiming to promote health IT will be...